Skip to main content
Log in

Nanorods of silicon carbide from silicon carbide powder by high temperature heat treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanorods of silicon carbide were found to be produced directly from silicon carbide powder when subjected to high temperature heat treatment. The powder with 20–50 μm grain size was kept in a graphite crucible (enclosed in a chamber/furnace) and heated from its bottom at 2700 °C for 15 min by employing a typical configuration of arc plasma (Ar). The heating was then followed by chamber cooling (up to room temperature) for 2 h. Silicon carbide nanorods of 10–120 nm diameter and 5–20 μm length grew within the powder when the graphite crucible was kept 90% closed at its top end during the heat treatment. The heat treated powder and nanorods were evaluated by XRD, SEM, AFM, HRTEM and micro Raman spectroscopy. A catalyst (Fe) driven two stage VLS mechanism is proposed to understand the growth of the nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang Z (1998) Micros Res Tech 40:163

    Article  CAS  Google Scholar 

  2. Seeger T, Redlich PK, Ruhle M (2000) Adv Mater 12:279

    Article  CAS  Google Scholar 

  3. Wong EW, Sheehan PE, Lieber CM (1997) Science (Washington DC) 277:1971

    Article  CAS  Google Scholar 

  4. Yang W, Miao H, Xie Z, Zhang L, An L (2004) Chem Phys Lett 383:441

    Article  CAS  Google Scholar 

  5. Wu RB, Yang GY, Pan Y, Chen JJ (2007) J Mater Sci 42:3800. doi:10.007/s10853-006-0461-5

    Article  CAS  Google Scholar 

  6. Brosselard P, Banu V, Camara N, Perez-Thomas A (2009) Mater Sci Eng B 165:15

    Article  CAS  Google Scholar 

  7. Xu D, He Z, Guo Y, Wang Y (2006) Microelectron Eng 83:89

    Article  CAS  Google Scholar 

  8. Pei LZ, Tang YH, Zhao XQ, Chen YW (2007) J Mater Sci 42:5068. doi:10.007/s10853-006-0390-3

    Article  CAS  Google Scholar 

  9. Dai H, Wong EW, Lu YZ, Fan S, Lieber CM (1995) Nature (London) 375:769

    Article  CAS  Google Scholar 

  10. Shin Y, Wang C, Samuels WD, Exarhos GJ (2007) Mater Lett 61:2814

    Article  CAS  Google Scholar 

  11. Huczko A, Lange H, Bystrzejewski M, Rummeli MH, Gemming T, Cudzilo SC (2005) Cryst Res Technol 40:334

    Article  CAS  Google Scholar 

  12. Li G, Li X, Wang H, Xing X, Yang Y (2010) Mater Sci Eng B 166:108

    Article  CAS  Google Scholar 

  13. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  14. Cheong KY, Lockman Z (2009) J Nanomater. 5 pp. doi: 10.1155/2009/572865

  15. Wagner RS, Ellis WR (1965) Trans Met Soc AIME 233:1053

    CAS  Google Scholar 

  16. Bootsma GA, Knippenberg WF, Verspui G (1971) J Cryst Growth 11:297

    Article  CAS  Google Scholar 

  17. Narisco-Romero FJ, Rodriguez-Reinoso F (1996) J Mater Sci 31:779. doi:10.007/BF00367899

    Article  Google Scholar 

  18. Belmonte T, Bonnetain L, Jinoux JL (1996) J Mater Sci 31:2367. doi:10.007/BF01152948

    Article  CAS  Google Scholar 

  19. Nayak BB, Mohanty BC, Singh SK (1996) J Am Ceram Soc 79:1197

    Article  CAS  Google Scholar 

  20. Bresker RI, Voronin NI, Khrycheva DD (1963) Refract Ind Ceram 4:93

    Google Scholar 

  21. Coppola JA, Lawler HA, Mcmurtry CH (1978) US Patent 4123286

  22. Chrysanthou A, Grieveson P, Jha A (1991) J Mater Sci 26:3463. doi:10.007/BF00557132

    Article  CAS  Google Scholar 

  23. Mishra SB, Mishra AK, Crause RW, Mamba BB (2009) J Am Ceram Soc 92:3052

    Article  CAS  Google Scholar 

  24. Pan Z, Lai HL, Au FCK, Duan X, Zhou W, Shi W, Wang N, Lee CS, Wong NB, Lee ST, Xie S (2000) Adv Mater 12:1186

    Article  CAS  Google Scholar 

  25. Yang W, Araki H, Kohyama A, Thavee Thavorn S, Suzuki H, Noda T (2004) J Am Ceram Soc 87:1720

    Article  CAS  Google Scholar 

  26. Gao YH, Bando Y, Kurashima K, Shato T (2000) J Electron Micros 49:641

    CAS  Google Scholar 

  27. Law M, Goldberger J, Yang P (2004) Annu Rev Mater Res 34:83. doi:10.1146/annurev.Matsci.34.040203.112300

    Article  CAS  Google Scholar 

  28. Feng X, Chen Z, Ma J, Zan X, Pu H, Lu G (2003) Optic Mater 23:39

    Article  CAS  Google Scholar 

  29. Nayak BB (2004) Surf Eng 20:139

    Article  CAS  Google Scholar 

  30. Chen YF, Liu XZ, Deng XW (2010) J Mater Sci Technol 26:1041

    CAS  Google Scholar 

  31. Pickard SM, Derby B, Feest EA (1991) J Mater Sci 26:6207. doi:10.007/BF01113906

    Article  CAS  Google Scholar 

  32. Hao YJ, Jin GQ, Han XD, Gyo XY (2006) Mater Lett 60:1334

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Nayak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, B.B., Behera, D. & Mishra, B.K. Nanorods of silicon carbide from silicon carbide powder by high temperature heat treatment. J Mater Sci 46, 3052–3059 (2011). https://doi.org/10.1007/s10853-010-5183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5183-z

Keywords

Navigation