Skip to main content

Advertisement

Log in

Anatase formation on titanium by two-step thermal oxidation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-step thermal oxidation of commercially pure Ti was investigated with a focus on the formation of anatase. A first-step treatment was conducted in Ar–(0.1–20)%CO atmosphere at a temperature of 773–1173 K for a holding time of 0 or 86.4 ks, and a subsequent second-step treatment was conducted in air at 473–873 K for 0–86.4 ks. Titanium oxides and titanium oxycarbide were obtained in the first step, with relative amounts depending on heating temperature, holding time, and CO partial pressure. An anatase-rich layer on Ti was obtained after second-step treatment in air at 573–773 K in cases where single-phase titanium oxycarbide formed in the first step. Thus, the formation of single-phase titanium oxycarbide in the first step and temperature control in the second step were required for the formation of an anatase-rich layer. The bonding strength of an anatase-rich layer with a thickness of 0.5 μm was calculated to be around 90 MPa. This study reveals the conditions under which an anatase-rich layer with excellent adherence to Ti can be prepared by thermal oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Satoh H, Kamikubo F, Shimogori K (1986) Tetsu-to-Hagané 72:300

    CAS  Google Scholar 

  2. Sun C, Hui R, Qu W, Yick S, Sun C, Qian W (2010) J Mater Sci 45:6235. doi:10.1007/s10853-010-4718-7

    Article  CAS  Google Scholar 

  3. Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J, Wang GJ, Ding PD, Xi TF, Leng Y (2003) Biomaterials 24:2177

    Article  CAS  Google Scholar 

  4. Sugino A, Tsuru K, Hayakawa S, Kikuta K, Kawachi G, Osaka A, Ohtsuki C (2009) J Ceram Soc Jpn 117:515

    Article  CAS  Google Scholar 

  5. Lin C-M, Yen S-K (2006) Mater Sci Eng C 26:54

    Article  Google Scholar 

  6. Wu J-M, Hayakawa S, Tsuru K, Osaka A (2002) Thin Solid Films 414:283

    Article  Google Scholar 

  7. Liang B, Fujibayashi S, Neo M, Tamura J, Kim H-M, Uchida M, Kokubo T, Nakamura T (2003) Biomaterials 24:4959

    Article  CAS  Google Scholar 

  8. Yang X-F, Chen Y, Yang F, He F-M, Zhao S-F (2009) Dent Mater 25:473

    Article  CAS  Google Scholar 

  9. Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim H-M, Kokubo T (2001) J Biomed Mater Res 56:562

    Article  CAS  Google Scholar 

  10. Zhao Z, Chen X, Chen A, Huo G, Li H (2009) J Mater Sci 44:6310. doi:10.1007/s10853-009-3869-x

    Article  CAS  Google Scholar 

  11. Masahashi N, Mizukoshi Y, Senboshi S, Ohtsu N (2009) Appl Catal B 90:255

    Article  CAS  Google Scholar 

  12. Zhang H, Banfield JF (2000) J Phys Chem B 104:3481

    Article  CAS  Google Scholar 

  13. Zhang H, Banfield JF (1998) J Mater Chem 8:2073

    Article  CAS  Google Scholar 

  14. Gouma PI, Mills MJ (2001) J Am Ceram Soc 84:619

    Article  CAS  Google Scholar 

  15. Tanaka K, Capule MFV, Hisanaga T (1991) Chem Phys Lett 187:73

    Article  CAS  Google Scholar 

  16. Kawahara T, Ozawa T, Iwasaki M, Tada H, Ito S (2003) J Colloid Interface Sci 267:377

    Article  CAS  Google Scholar 

  17. Ozawa T, Iwasaki M, Tada H, Akita T, Tanaka K, Ito S (2005) J Colloid Interface Sci 281:510

    Article  CAS  Google Scholar 

  18. Popa M, Diamandescu L, Vasiliu F, Teodorescu CM, Cosoveanu V, Baia M, Feder M, Baia L, Danciu V (2009) J Mater Sci 44:358. doi:10.1007/s10853-008-3147-3

    Article  CAS  Google Scholar 

  19. Hirose F, Ito M, Kurita K (2008) Jpn J Appl Phys 47:5619

    Article  CAS  Google Scholar 

  20. Chaiyakun S, Pokaipisit A, Limsuwan P, Ngotawornchai B (2009) Appl Phys A 95:579

    Article  CAS  Google Scholar 

  21. Saji VS, Choe HC, Brantley WA (2009) J Mater Sci 44:3975. doi:10.1007/s10853-009-3542-4

    Article  CAS  Google Scholar 

  22. Kusabiraki K, Kuroda N, Motohira I, Ooka T (1994) Tetsu-to-Hagané 80:155

    CAS  Google Scholar 

  23. Dong H, Li XY (2000) Mater Sci Eng A 280:303

    Article  Google Scholar 

  24. Borgioli F, Galvanetto E, Fossati A, Pradelli G (2004) Surf Coat Technol 184:255

    Article  CAS  Google Scholar 

  25. Lee K-S, Park I-S (2003) Scr Mater 48:659

    Article  CAS  Google Scholar 

  26. Ueda K, Narushima T, Goto T, Katsube T, Nakagawa H, Kawamura H, Taira M (2007) Mater Trans 48:307

    Article  CAS  Google Scholar 

  27. Shabalin IL, Roach DL, Shabalin LI (2008) J Eur Ceram Soc 28:3177

    Article  CAS  Google Scholar 

  28. Maitre A, Cathalifaud P, Lefort P (1997) High Temp Mater Process 1:393

    CAS  Google Scholar 

  29. Ouensanga A (1981) J Less-Common Met 79:237

    Article  CAS  Google Scholar 

  30. Bellucci A, Gozzi D, Latini A (2004) Solid State Ion 172:369

    Article  CAS  Google Scholar 

  31. Kwon H, Kang S (2009) J Am Ceram Soc 92:272

    Article  CAS  Google Scholar 

  32. Chase MW Jr (1998) NIST-JANAF thermochemical tables, 4th edn. ACS and AIP, New York

    Google Scholar 

  33. Shaviv R (1996) Mater Sci Eng A 209:345

    Article  Google Scholar 

  34. Shimada S, Kozeki M (1992) J Mater Sci 27:1869. doi:10.1007/BF01107214

    Article  CAS  Google Scholar 

  35. Irie H, Watanabe Y, Hashimoto K (2003) Chem Lett 32:772

    Article  CAS  Google Scholar 

  36. Mitsuo A, Uchida S, Nihira N, Iwaki M (1998) Surf Coat Technol 103–104:98

    Article  Google Scholar 

  37. Tsumura T, Kojitani N, Izumi I, Iwashita N, Toyoda M, Inagaki M (2002) J Mater Chem 12:1391

    Article  CAS  Google Scholar 

  38. Chiu KY, Wong MH, Cheng FT, Man HC (2007) Appl Surf Sci 253:6762

    Article  CAS  Google Scholar 

  39. Park Y-J, Shin K-H, Song H-J (2007) Appl Surf Sci 253:6013

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. K. Kobayashi of Tohoku University for his study on TEM analyses. This study was financially supported by the Special Education and Research Program “Highly-functional Interface Science: Innovation of Biomaterials with Highly Functional Interface to Host and Parasite” of the Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under Contract nos. 19360324 and 22360299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Narushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okazumi, T., Ueda, K., Tajima, K. et al. Anatase formation on titanium by two-step thermal oxidation. J Mater Sci 46, 2998–3005 (2011). https://doi.org/10.1007/s10853-010-5177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5177-x

Keywords

Navigation