Skip to main content
Log in

Structural and morphological investigations on DC-magnetron-sputtered nickel films deposited on Si (100)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pure nickel thin films were deposited on Si (100) substrates under different conditions of sputtering using direct current magnetron sputtering from a nickel metal target. The different deposition parameters employed for this study are target power, argon gas pressure, substrate temperature and substrate-bias voltage. The films exhibited high density of void boundaries with reduction in <111> texture deposited under high argon gas pressures. At argon gas pressure of 5 mTorr and target power of 300 W, Ni deposition rate was ~40 nm/min. In addition, coalescence of grains accompanied with increase in the film texture was observed at high DC power. Ni films undergo morphological transition from continuous, dense void boundaries to microstructure free from voids as the substrate-bias voltage was increased from −10 to −90 V. Furthermore, as the substrate temperature was increased, the films revealed strong <111> fiber texture accompanied with near-equiaxed grain structure. Ni films deposited at 770 K showed the layer-by-layer film formation which lead to dense, continuous microstructure with increase in the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kawabata K, Tanaka T, Kitabatake A, Yamada K, Mikami Y, Kajioka H, Toiyama K (2001) J Vac Sci Technol A 19:1438

    Google Scholar 

  2. Gambino JP, Colgan EG (1998) Mater Chem Phys 52:99

    Article  CAS  Google Scholar 

  3. Tam PL, Nyborg L (2009) Surf Coat Technol 203:2886

    Article  CAS  Google Scholar 

  4. Avendano A, Azens A, Niklasson GA, Granqvist CG (2007) Mater Sci Eng B 138:112

    Article  CAS  Google Scholar 

  5. Ai L, Fang G, Yuan L, Liu N, Wang M, Li C, Zhang Q, Li J, Zhao X (2008) Appl Surf Sci 254:2401

    Article  CAS  Google Scholar 

  6. Zhang H, Zhou YN, Sun Q, Fu ZW (2008) Solid State Sci 10:1166

    Article  CAS  Google Scholar 

  7. Nakai H, Qiu H, Adamik M, Safran G, Barna PB, Hashimoto M (1995) Thin Solid Films 263:159

    Article  CAS  Google Scholar 

  8. Yang J, Makihara K, Nakai H, Hashimoto M, Barna A, Barna PB (1998) Thin Solid Films 319:115

    Article  CAS  Google Scholar 

  9. Yang Y, Qiu H, Chen X, Yu M (2009) Appl Surf Sci 255:6226

    Article  CAS  Google Scholar 

  10. Pauleau Y, Kukielka S, Gulbinski W, Ortega L, Dub SN (2006) J Phys D Appl Phys 39:2803

    Article  CAS  Google Scholar 

  11. Yin Y, Pan Y, Rubanov S, Bilek MMM, McKenzie DR (2009) Nanosci Nanotechnol Lett 1:32

    CAS  Google Scholar 

  12. Tu KN, Mayer JW (1978) In: Poate JM, Tu KN, Mayer JW (eds) Thin films inter-diffusion and reactions. John Wiley, New York

    Google Scholar 

  13. Chiu KCR, Poate JM, Feldman LC, Doherty CJ (1980) Appl Phys Lett 36:544

    Article  CAS  Google Scholar 

  14. Jardim PM, Acchar W, Losch W (1999) Appl Surf Sci 137:163

    Article  CAS  Google Scholar 

  15. Bhaskaran M, Sriram S, Mitchell DRG, Short KT, Holland AS, Mitchell A (2009) Micron 40:11

    Article  CAS  Google Scholar 

  16. Oukassi S, Moulet JS, Lay S, Hodaj F (2009) Microelectron Eng 86:397

    Article  CAS  Google Scholar 

  17. Bendahan Marc, Canet Pierre, Seguin Jean-Luc, Carchano Herve (1995) Mater Sci Eng B 34:112

    Article  Google Scholar 

  18. Chen JZ, Wu SK (1999) Thin Solid Films 339:194

    Article  CAS  Google Scholar 

  19. Chen P, Ting JM (2001) Thin Solid Films 398–399:597

    Article  Google Scholar 

  20. Ishida A, Sato M (2003) Acta Mater 51:5571

    Article  CAS  Google Scholar 

  21. Ho KK, Carman GP (2000) Thin Solid Films 370:18

    Article  CAS  Google Scholar 

  22. Fu Y, Du H, Huang W, Zhang S, Hu M (2004) Sens Actuators A 112:395

    Article  Google Scholar 

  23. Setton M, Van der Spiegel J, Rothman B (1989) J Mater Res 4:1218

    Article  CAS  Google Scholar 

  24. Lehnert T, Tixier S, Boni P, Gotthardt R (1999) Mater Sci Eng A 273–275:713

    Google Scholar 

  25. Cho HHY, Kim HY, Miyazaki S (2006) Mater Sci Eng A 438–440:699

    Google Scholar 

  26. Krulevitch P, Ramsey PB, Makowiecki DM, Lee AP, Northrup MA, Johnson GC (1996) Thin Solid Films 274:101

    Article  CAS  Google Scholar 

  27. Ohta A, Bhansali S, Kishimoto I, Umeda A (2000) Sens Actuators A 86:165

    Article  Google Scholar 

  28. Sanjabi S, Cao YZ, Sadrnezhaad SK, Barber ZH (2005) J Vac Sci Technol A 23:1425

    Article  CAS  Google Scholar 

  29. Inoue S, Sawada N, Namazu T (2009) Vacuum 83:664

    Article  Google Scholar 

  30. Fu YQ, Luo JK, Flewitt AJ, Huang WM, Zhang S, Du HJ, Milne WI (2009) Int J Comput Mater Sci Surf Eng 2:208

    Article  CAS  Google Scholar 

  31. Iseki T, Maeda H, Itoh T (2008) Vacuum 82:1162

    Article  CAS  Google Scholar 

  32. Zhang H, Poole J, Eller R, Keefe M (1999) J Vac Sci Technol A 17:1904

    Article  CAS  Google Scholar 

  33. Chang SA, Skolnik MB, Altman C (1986) J Vac Sci Technol A 4:413

    Article  CAS  Google Scholar 

  34. Zendehnam A, Ghanati M, Mirzaei M (2007) J. Phys.: Conference Series 61:1322

    Google Scholar 

  35. Ohring M (1991) Materials science of thin films: deposition and structure. Academic press, San Diego

    Google Scholar 

  36. Assuncao V, Fortunato E, Marques A, Aguas H, Ferreira I, Costa MEV, Martins R (2003) Thin Solid Films 427:402

    Article  Google Scholar 

  37. Gou L, Ran CQJ, Zheng C (1999) Thin Solid Films 345:42

    Article  CAS  Google Scholar 

  38. Mikami Y, Yamada K, Ohnari A, Degawa T, Migita T, Tanaka T, Kawabata K, Kajioka H (2000) Surf Coat Technol 133–134:295

    Article  Google Scholar 

  39. Kuwahara K, Fujiyama H (1994) IEEE Trans Plasma Sci 22(4):442

    Article  CAS  Google Scholar 

  40. Chan KY, Teo BS (2005) J Mater Sci 40:5971. doi:10.1007/s10853-005-1362-8

    Article  CAS  Google Scholar 

  41. Paul A, Wingberműhle J (2006) J Appl Surf Sci 252:8151

    Article  CAS  Google Scholar 

  42. Wu ML, Kiely JD, Klemmer T, Hsia YT, Howard K (2004) Thin Solid Films 449:120

    Article  CAS  Google Scholar 

  43. Musil J, Matous J, Vlcek J, Koydl L, Muller K (1994) Czech J Phys 44:565

    Article  CAS  Google Scholar 

  44. Igasaki Y, Kanma H (2001) Appl Surf Sci 169–170:508

    Article  Google Scholar 

  45. Cheng H, Sun Y, Hing P (2003) Thin Solid Films 434:112

    Article  CAS  Google Scholar 

  46. Chawla V, Jayaganthan R, Chawla AK, Chandra R (2008) Mater Chem Phys 111:414

    Article  CAS  Google Scholar 

  47. Mitra R, Hoffman RA, Madan A, Weertman JR (2001) J Mater Res 16:1010

    Article  CAS  Google Scholar 

  48. Shinmitsu T, Shi J, Hashimoto M (2002) Surf Coat Technol 151:55

    Article  Google Scholar 

  49. Almtoft KP, Bottiger J, Chevallier J, Schell N, Martins RMS (2005) J Mater Res 20:1071

    Article  CAS  Google Scholar 

  50. Chan KY, Teo BS (2007) Microelectron J 38:60

    Article  CAS  Google Scholar 

  51. Thornton JA (1986) J Vac Sci Technol A 4:3059

    Article  CAS  Google Scholar 

  52. Thornton JA (1974) J Vac Sci Technol 11:666

    Article  CAS  Google Scholar 

  53. Thornton JA (1975) J Vac Sci Technol 12:830

    Article  CAS  Google Scholar 

  54. Qiu H, Nakai H, Hashimoto M, Safran G, Adamik M, Barna P, Yagi E (1994) J Vac Sci Technol A 12:2855

    Article  CAS  Google Scholar 

  55. Ishino M, Yang J, Makihara K, Shi J, Hashimoto M (2000) J Vac Sci Technol A 18:2339

    Article  CAS  Google Scholar 

  56. Shi J, Kojima D, Hashimoto M (2000) J Appl Phys 88:1679

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Indian Institute of Technology, Kharagpur, India. The authors would like to thank Prof. R. Mitra of Indian Institute of Technology, Kharagpur for his helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Geetha Priyadarshini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geetha Priyadarshini, B., Aich, S. & Chakraborty, M. Structural and morphological investigations on DC-magnetron-sputtered nickel films deposited on Si (100). J Mater Sci 46, 2860–2873 (2011). https://doi.org/10.1007/s10853-010-5160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5160-6

Keywords

Navigation