Skip to main content
Log in

The stability of BaFe12O19 nanoparticles in polar solvents

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have studied suspensions of hard-magnetic BaFe12O19 particles in water, ethanol and 1-butanol. The surfaces of these particles were previously modified with the surfactant dodecylbenzylsulphonic acid. The stabilities of the suspensions were estimated from their saturation concentrations and zeta potentials. We found that the 1-butanol suspensions were more stable than the ethanol-based suspensions and much more stable than the water-based suspensions. We analyzed the suspensions and the dispersed particles using gravimetry, conductometry and transmission electron microscopy, measured their zeta potentials, and calculated the interparticle-attraction interaction energies due to the van der Waals and magnetic dipole–dipole forces. The magnitudes of the attraction energies varied significantly with the particles’ sizes and the separation distances between the particles, and we found that the contribution of the van der Waals attraction energy can be neglected with respect to the magnetic dipole–dipole attraction. The observed differences in the stability of the suspensions were explained on the basis of the calculated electrostatic and steric repulsion energies. Electrosteric stabilization was possible in the 1-butanol and the ethanol for particles with radii and thicknesses up to 15 nm, while a too small electrostatic repulsion and the absence of steric repulsion in the water resulted in rapid agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim JY, Koh JH, Song JS, Grishin A (2004) Phys Status Solidi B 241:1714

    Article  CAS  Google Scholar 

  2. Erenstein W, Mathur ND, Scott JF (2006) Nature 442:759

    Article  Google Scholar 

  3. Sudakar C, Subbana GN, Kutty TRN (2003) J Appl Phys 94:6030

    Article  CAS  Google Scholar 

  4. Pollert E, Veverka P, Veverka M, Kaman O, Zaveta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Prog Solid State Chem 37:1

    Article  CAS  Google Scholar 

  5. Charles SW (2002) In: Odenbach S (ed) Ferrofluids. Springer, Heidelberg

    Google Scholar 

  6. Mueller R, Hiergeist R, Steinmetz H, Ayoub N, Fujisaki M, Eshueppel W (1999) J Magn Magn Mater 201:34

    Article  Google Scholar 

  7. Mueller R, Hergt R, Dutz S, Zeisberger M, Gawalek W (2006) J Phys Condens Matter 18:S2527

    Article  CAS  Google Scholar 

  8. Helgesen G, Skleltorp AT, Mors PM, Botet R, Jullien R (1988) Phys Rev Lett 61:1736

    Article  Google Scholar 

  9. Pugh RJ, Bergstrom L (1994) Surface and colloid chemistry in advanced ceramics processing. Marcel Dekker, Inc, New York

    Google Scholar 

  10. Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications, Inc., Mineola, New York

    Google Scholar 

  11. Tadros Th (1996) Adv Colloid Interface Sci 68:97

    CAS  Google Scholar 

  12. Bagchi P (1974) J Colloid Interface Sci 47:86

    Article  CAS  Google Scholar 

  13. Scholten PC (1983) J Magn Magn Mater 39:99

    Article  CAS  Google Scholar 

  14. Meier DJ (1967) J Phys Chem 71:1861

    Article  CAS  Google Scholar 

  15. Sheparovich R, Sahoo Y, Motornov M, Wang S, Luo H, Prasad PN, Sokolov I, Minko S (2006) Chem Mater 18:591

    Article  Google Scholar 

  16. Makovec D, Košak A, Žnidaršič A, Drofenik M (2004) Nanotechnology 15:S160

    Article  CAS  Google Scholar 

  17. Batlle X, Garcia del Muro M, Tejada J, Pfeiffer H, Goernet P, Sinn E (1993) J Appl Phys 74:3333

    Article  CAS  Google Scholar 

  18. de Araujo JH, Cabral FAO, Ginani MF, Soares JM, Machado FLA (2006) J Non Cryst Solids 352:3518

    Article  Google Scholar 

  19. Vejpravova J, Plocek J, Niznansky D, Hutlova A, Rehspringer JL, Sechovsky V (2005) IEEE Trans Magn 41:3469

    Article  CAS  Google Scholar 

  20. Stoia M, Caizer C, Stefanescu M, Barvinschi P, Julean I (2007) J Therm Anal Calorim 88:193

    Article  CAS  Google Scholar 

  21. Makovec D, Čampelj S, Bele M, Maver U, Zorko M, Drofenik M, Jamnik J, Gabršček M (2009) Colloid Surf A 334:74

    Article  CAS  Google Scholar 

  22. Inoue H, Fukke H, Katsumoto M (1990) IEEE Trans Magn 26:75

    Article  Google Scholar 

  23. Croucher MD, Milkie TH (1983) Faraday Discuss Chem Soc 76:261

    Article  Google Scholar 

  24. Tsouris C, Scott TC (1995) J Colloid Interface Sci 171:319

    Article  CAS  Google Scholar 

  25. Horn RG, Israelachvili JN (1981) J Chem Phys 75:1400

    Article  CAS  Google Scholar 

  26. Bergstrom L (1997) Adv Colloid Interface Sci 70:125

    Article  CAS  Google Scholar 

  27. Tadmor R, Rosensweig RE, Frey J, Klein J (2000) Langmuir 16:9117

    Article  CAS  Google Scholar 

  28. Roos W (1980) J Am Ceram Soc 63:601

    Article  CAS  Google Scholar 

  29. Suerig C, Hempel KA, Bonnenberg D (1994) IEEE Trans Magn 30:4092

    Article  CAS  Google Scholar 

  30. Sankaranarayanan VK, Khan DC (1996) J Magn Magn Mater 153:337

    Article  CAS  Google Scholar 

  31. Smit J, Wijn HPJ (1959) Ferrites. Philips’ Technical Library, Eindhoven

    Google Scholar 

  32. Primc D, Makovec D, Lisjak D, Drofenik M (2009) Nanotechnology 20:315605 (9 pp)

  33. Kodama RH (1999) J Magn Magn Mater 200:359

    Article  CAS  Google Scholar 

  34. Lisjak D, Drofenik M (2009) J Appl Phys 105:084908 (8 pp)

  35. Ovtar S, Lisjak D, Drofenik M (2009) J Colloid Interface Sci 337:456

    Article  CAS  Google Scholar 

  36. Chin CJ, Yiacoumi S, Tsouris C (2001) Langmuir 17:6065

    Article  CAS  Google Scholar 

  37. Ebner AD, Ritter JA, Ploehn HJ (2000) J Colloid Interface Sci 225:39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia. The authors are grateful to Mr. Stane Čampelj for the zeta potential measurements and to Mr. Sašo Gyergyek and to Mr. Marko Jagodič for the magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darja Lisjak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisjak, D., Ovtar, S. & Drofenik, M. The stability of BaFe12O19 nanoparticles in polar solvents. J Mater Sci 46, 2851–2859 (2011). https://doi.org/10.1007/s10853-010-5159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5159-z

Keywords

Navigation