Skip to main content
Log in

Deformation behavior of an Al–Cu–Mg–Mn–Zr alloy during hot compression

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Deformation behavior of an Al–Cu–Mg–Mn–Zr alloy during hot compression was characterized in present work by high-temperature testing and transmission electron microscope (TEM) studies. The true stress–true strain curves exhibited a peak stress at a critical stain. The peak stress decreased with increasing deformation temperature and decreasing strain rate, which can be described by Zener–Hollomon (Z) parameter in hyperbolic sine function with the deformation activation energy 277.8 kJ/mol. The processing map revealed the existence of an optimum hot-working regime between 390 and 420 °C, under strain rates ranging from 0.1 to 1 s−1. The main softening mechanism of the alloy was dynamic recovery at high lnZ value; continuous dynamic recrystallization (DRX) occurred as deformed at low lnZ value. The dynamic precipitation of Al3Zr and Al20Cu2Mn3 dispersoids during hot deformation restrained DRX and increased the hot deformation activation energy of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Williams JC, Starke EA Jr (2003) Acta Mater 51:5775

    Article  CAS  Google Scholar 

  2. Okayasu M, Sato K, Mizuno M (2008) J Mater Sci 43:2792. doi:10.1007/s10853-008-2544-y

    Article  CAS  Google Scholar 

  3. Parel TS, Wang SC, Statrink MJ (2010) Mater Des 31:S2

    Article  CAS  Google Scholar 

  4. Gao N, Starink MJ, Kamp N, Sinclair I (2007) J Mater Sci 42:4398. doi:10.1007/s10853-006-0659-6

    Article  CAS  Google Scholar 

  5. Cavaliere P (2002) J Light Met 2:247

    Article  Google Scholar 

  6. Liu XY, Pan QL, He YB, Li WB, Liang WJ, Yin ZM (2009) Mater Sci Eng A 500:150

    Article  Google Scholar 

  7. Li HZ, Li Z, Song M, Liang XP, Guo FF (2010) Mater Des 30:2171

    Article  Google Scholar 

  8. Banerjee S, Robi PS, Srinivasan A, Kumar LP (2010) Mater Sci Eng A 527:2498

    Article  Google Scholar 

  9. Ebrahimi GR, Zarei-Hanzaki A, Haghshenas M, Arabshahi H (2008) J Mater Proc Technol 206:25

    Article  CAS  Google Scholar 

  10. Huang XD, Zhang H, Han Y, Wu WX, Chen JH (2010) Mater Sci Eng A 527:485

    Article  Google Scholar 

  11. Zhang H, Li LX, Yuan D, Peng DS (2007) Mater Charact 58:168

    Article  Google Scholar 

  12. Meng G, Li BL, Li HM, Huang H, Nie ZR (2009) Mater Sci Eng A 516:131

    Article  Google Scholar 

  13. Jin NP, Zhang H, Han Y, Wu WX, Chen JH (2009) Mater Charact 60:530

    Article  CAS  Google Scholar 

  14. Castillo LD, Lavernia EJ (2000) Metall Mater Trans A 31:2287

    Article  Google Scholar 

  15. Robson JD, Prangnell PB (2001) Acta Mater 49:599

    Article  CAS  Google Scholar 

  16. Wang SC, Starink MJ (2005) Int Mater Rev 50:193

    Article  Google Scholar 

  17. Cabibbo M, Evangelista E, Spigarell S (2004) Metall Mater Trans A 35:293

    Article  Google Scholar 

  18. Chiba A, Lee SH, Matsumoto H, Nakamura M (2009) Mater Sci Eng A 513–514:286

    Google Scholar 

  19. Jagan RG, Srinivasana N, Gokhalea AA, Kashyapb BP (2009) J Mater Proc Technol 209:5964

    Article  Google Scholar 

  20. Cai DY, Xiong LY, Liu WC, Sun GD, Yao M (2009) Mater Des 30:921

    Article  CAS  Google Scholar 

  21. Anbuselvan S, Ramanathan S (2010) Mater Des 31:2319

    Article  CAS  Google Scholar 

  22. Łyszkowski R, Bystrzycki J (2006) Intermetallics 14:1231

    Article  Google Scholar 

  23. McQueen HJ, Ryan ND (2002) Mater Sci Eng A 322:43

    Article  Google Scholar 

  24. Zong YY, Shan DB, Xu M, Lu Y (2009) J Mater Proc Technol 209:1988

    Article  CAS  Google Scholar 

  25. El-Danaf EA, AlMajid AA, Soliman MS (2008) J Mater Sci 43:6324. doi:10.1007/s10853-008-2895-4

    Article  CAS  Google Scholar 

  26. McQueen HJ, Imbert CAC (2004) J Alloys Compd 378:35

    Article  CAS  Google Scholar 

  27. Spigarelli S, Cabibbo M, Evangelista E (2003) J Mater Sci 38:81. doi:10.1023/A:1021161715742

    Article  CAS  Google Scholar 

  28. Prasad YVRK, Rao KP (2005) Mater Sci Eng A 391:141

    Article  Google Scholar 

  29. Cui C, Schulz A, Epp J, Zoch HW (2010) J Mater Sci 45:2798. doi:10.1007/s10853-010-4269-y

    Article  CAS  Google Scholar 

  30. Prasad SK, Gokhale AA, Mukhopadhyay AK, Banejee D, Goel DB (1999) Acta Mater 47:2581

    Article  CAS  Google Scholar 

  31. Mohamed FA, Langdon TG (1974) Met Trans 5:2339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of National Key Fundamental Research Project of China (Grant No. 2005CB623705-04) and Natural Science Foundation of Hunan Province (Grant No. 08JJ3101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, Z., Lin, L. et al. Deformation behavior of an Al–Cu–Mg–Mn–Zr alloy during hot compression. J Mater Sci 46, 3708–3715 (2011). https://doi.org/10.1007/s10853-010-5143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5143-7

Keywords

Navigation