Skip to main content

Optical switching behavior of azobenzene/PMMA blends with high chromophore concentration

Abstract

In this article, the authors will present a simple way to produce thin solid organic films, with a content of more than 60 wt% photoactive molecules dispersed in a polymeric matrix showing an almost complete and fully reversible photoisomerization. These high filling factors could be achieved by using branched side chains in the molecules, which prevent crystallization. The chromophores were codissolved with the polymer Polymethylmethacrylate (PMMA) of different M w in toluene in various concentrations and spin casted onto the substrate. The effect of the Mw of PMMA on the switching kinetics and the agglomeration tendency of different molecule configurations were investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Weh K, Noack M, Ruhmann R, Hoffmann K, Toussaint P, Caro J (1998) Chem Eng Technol 21:5

    Article  Google Scholar 

  2. Barrett CJ, Mamiya JI, Yager KG, Ikeda T (2007) Soft Matter 3:1249

    CAS  Article  Google Scholar 

  3. Yin R, Xu W, Kondo M, Yen C, Mamiya J, Ikeda T, Yu Y (2009) J Mater Chem 19:3141. doi:10.1039/b904973h

    CAS  Article  Google Scholar 

  4. Koerner H, White TJ, Tabiryan NV, Bunning TJ, Vaia RA (2008) Mater Today 11:34

    CAS  Article  Google Scholar 

  5. Evans RA, Hanley TL, Skidmore MA, Davis TP, Such GK, Yee LH, Ball GE, Lewis DA (2005) Nat Mater 4(3):249

    CAS  Article  Google Scholar 

  6. Kawata S, Kawata Y (2000) Chem Rev 100:1777

    CAS  Article  Google Scholar 

  7. Willner I, Rubin S (1996) Angew Chem Int Ed 35:367

    CAS  Article  Google Scholar 

  8. Yesodha SK, Sadashiva Pillai CK, Tsutsumi N (2004) Prog Polym Sci 29:45

    CAS  Article  Google Scholar 

  9. Paik CS, Morawetz H (1972) Macromolecules 5:171

    CAS  Article  Google Scholar 

  10. Bohm N, Materny A, Kiefer W, Steins H, Muller MM, Schottner G (1996) Macromolecules 29:2599

    Article  Google Scholar 

  11. Yager K, Barrett CJ (2009) Smart light-responsive materials, 1st edn. Wiley, New Jersey

    Google Scholar 

  12. Viswanathan NK, Kim DY, Bian S, Williams J, Liu W, Li L, Samuelson L, Kumar J, Tripathy SK (1999) J Mater Chem 9:1941

    CAS  Article  Google Scholar 

  13. Andruzzi L, Altomare A, Ciardelli F, Solaro R, Hvilsted S, Ramanujam PS (1999) Macromolecules 32(2):448

    CAS  Article  Google Scholar 

  14. Zhang Y, Cheng Z, Chen X, Zhang W, Wu J, Zhu J, Zhu X (2007) Macromolecules 40:4809

    CAS  Article  Google Scholar 

  15. Lagugne-Labarthet F, Buffeteau T, Sourisseau C (1998) J Phys Chem B 102:2654

    Article  Google Scholar 

  16. Yager KG, Barrett CJ (2006) J Photochem Photobiol A 182:250

    CAS  Article  Google Scholar 

  17. Janus K, Koshets IA, Sworakowski J, Nespurek S (2002) J Mater Chem 12:1657

    CAS  Article  Google Scholar 

  18. Barrett C, Natansohn A, Rochon P (1995) Chem Mater 7:899

    CAS  Article  Google Scholar 

  19. Meerholz K, Bitmer R, De Nardin Y, Bräuchle C, Hendrickx E, Volodin BL, Kippelen B, Peyghambarian N (1997) Adv Mater 9(13):1043

    CAS  Article  Google Scholar 

  20. Cox AM, Blackburn RD, West PD, King TA, Wade FA, Leigh DA (1996) Appl Phys Lett 68(20):2801

    CAS  Article  Google Scholar 

  21. Carlen CR, McGee DJ (1998) Opt Commun 152:342

    CAS  Article  Google Scholar 

  22. Priimagi A, Cattaneo S, Ras RHA, Valkama S, Ikkala O, Kauranen M (2005) Chem Mater 17:5798

    CAS  Article  Google Scholar 

  23. Rau H (1990) In: Rebek J (ed) Photochemistry and photophysics. CRC Press, Boca Raton, p 119

    Google Scholar 

  24. Tawa K, Kamada K, Sakaguchi T, Ohta K (2000) Polymer 41:3235

    CAS  Article  Google Scholar 

  25. Takele H, Jebril S, Strunskus T, Zaporojchenko V, Adelung R, Faupel F (2008) Appl Phys A 92:345

    CAS  Article  Google Scholar 

  26. Zaporojtchenko V, Strunskus T, Greve H, Schürmann U, Takele H, Hanisch C, Chakravadhanula VSK, Ni N, Gerber A, Quandt E, Podschun R, Faupel F (2008) Polym Polym Comp 16:471

    Google Scholar 

  27. Bornholdt C (2008) Ligandgetriebener lichtinduzierter Spin-Crossover in Einzelmolekülen bei Raumtemperatur, Dissertation Christian-Albrechts-University of Kiel, Germany

  28. Weill A, Dechenaux E (1988) Polym Eng Sci 28:945

    CAS  Article  Google Scholar 

  29. Sworakowski J, Janus K, Nespurek S (2005) Adv Colloid Interface Sci 116:97

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the DFG for funding this project as part of the collaborative research center 677-Function by switching (project C1). Furthermore, we want to thank Dipl.-Ing. Stefan Rehders for his support in any technical question.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Faupel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 623 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pakula, C., Hanisch, C., Zaporojtchenko, V. et al. Optical switching behavior of azobenzene/PMMA blends with high chromophore concentration. J Mater Sci 46, 2488–2494 (2011). https://doi.org/10.1007/s10853-010-5097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5097-9

Keywords

  • PMMA
  • Switching Time
  • Azobenzene
  • Switching Behavior
  • White Light Illumination