Skip to main content
Log in

Effect of γ-rays irradiation on the structure and magnetic properties of Mg–Cu–Zn ferrites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of γ-irradiation on the structure and magnetic properties of ferrite samples with chemical formula Mg x Cu0.5−x Zn0.5Fe2O4 (where x = 0.0, 0.2, and 0.4) prepared by conventional ceramic method has been studied. X-ray diffraction patterns (XRDPs) indicated the presence of a single spinel phase for all the investigated samples. The initial permeability and magnetization were measured, before and after irradiation on toroidal samples used as transformer cores. The initial permeability μi was measured as a function of temperature at constant frequency of 10 kHz and Curie temperatures (T C) were determined. It was found that, due to irradiation, both of lattice parameter and porosity were increased. On the other hand, the values of magnetization and initial permeability were decreased as a result of irradiation. In addition, there was a decrease in the crystallite size, homogeneity, and the values of Curie temperature with significant decrease in the values of μi and T C for the sample with x = 0.0. The results are discussed in the light of γ-rays interaction with ferrite lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hak PJ, Ho KJ, Hee CS (1996) Proceedings of the seventh international conference on ferrites, Bordeaux, France, vol 348, 1996

  2. Qi X, Zhou J, Yue Z, Gui Z, Li L (2002) J Magn Magn Mater 251:316

    Article  CAS  Google Scholar 

  3. Atassi Y, Tally M (2006) J Iran Chem Soc 3:242

    CAS  Google Scholar 

  4. Yue Z, Zhou J, Li L, Wang X, Gui Z (2001) Mater Sci Eng B 86:64

    Article  Google Scholar 

  5. Parak J, Kim J, Cho S (1997) J Phys IV 07:C1-193

    Article  Google Scholar 

  6. Ahmad MA, Bishay ST, Radwan FA (2002) J Phys Chem Solids 63:279

    Article  Google Scholar 

  7. Hemeda OM, El-Saadawy M (2003) J Magn Magn Mater 256:63

    Article  CAS  Google Scholar 

  8. Mazen SA, Mansour SF, Zaki HM (2003) Cryst Res Technol 38:471

    Article  CAS  Google Scholar 

  9. Darwish NZ, Hemeda OM, Abd El-Ati MI (1994) Appl Radiat Isot 45(4):445

    Article  CAS  Google Scholar 

  10. Fetisov VB, Kozhina GA, Fishman A Ya, Kurennykh TE, Vykhodets VB (1998) J Appl Phys 83:6876

    Article  CAS  Google Scholar 

  11. Okasha N (2010) J Alloys Comps 490:307

    Article  CAS  Google Scholar 

  12. Standley KJ (1972) Oxide magnetic materials, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  13. Poltinnikov SA, Turkevic H (1966) Sov Phys Solid State 8:1144

    Google Scholar 

  14. Mazen SA, Wafik AH, Mansour SF (1996) J Mater Sci 31:2661. doi:10.1007/BF00687297

    Article  CAS  Google Scholar 

  15. Hemeda DM (2005) Am J Appl Sci 2:989

    Article  CAS  Google Scholar 

  16. Ahmed MA, Ateia E, Abdelatif G, Salem FM (2003) Mater Chem Phys 81:63

    Article  CAS  Google Scholar 

  17. Sattar AA, El-sayed HM, Agami WR (2007) J Mater Eng Perform 16(5):573

    Article  CAS  Google Scholar 

  18. Bhosale DN, Choudhari ND, Sawant SR, Bakare PP (1997) J Magn Magn Mater 173:51

    Article  CAS  Google Scholar 

  19. Ateia E (2006) Egypt J Solids 29(2):317

    Google Scholar 

  20. Hamada IM (2004) J Magn Magn Mater 271:318

    Article  CAS  Google Scholar 

  21. Globus A, Duplex P, Guyot M (1971) IEEE Trans Magn 7:617

    Article  CAS  Google Scholar 

  22. Globus A, Duplex P (1968) J Appl Phys 39:727

    Article  CAS  Google Scholar 

  23. Baca G, Valenzuela R, Escobar MA, Magña LF (1985) J Appl Phys 57:4183

    Article  CAS  Google Scholar 

  24. Globus A, Guyot M (1972) Phys Status Solidi B 52:427

    Article  CAS  Google Scholar 

  25. Murthy VRK, Raman R, Viswanathan B (1989) Proceedings of the fifth international conference on ferrites, Bombay, January, 1989, vol 447. Oxford and IBH, New Delhi

  26. Rezlescu N, Rezlescu E, Popa PD, Craus ML, Rezlescu L (1998) J Magn Magn Mater 182:199

    Article  CAS  Google Scholar 

  27. Chikazumi S, Charap SH (1964) Physics of magnetism, vol 91. Wiley, New York

    Google Scholar 

  28. Bhosale DN, Sawant SR, Gopalkrishnan GV, Chougule RS (1998) J Mater Sci 9:331. doi:10.1023/A:1008972918402

    CAS  Google Scholar 

  29. Rado GT, Folen VJ, Emerson WH (1956) Proc IEEE 104:198

    Google Scholar 

  30. Okamura T, Kojima Y (1952) Phys Rev 86:1040

    Article  CAS  Google Scholar 

  31. Gorter EW (1954) Philips Res Rep 9:295

    CAS  Google Scholar 

  32. Cedillo E, Ocampo J, Rivera V, Valenzuela R (1980) J Phys E 13:383

    Article  CAS  Google Scholar 

  33. Sattar AA, Samy AM (2002) J Mater Sci 37:4499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the supervisor of 60Co-irradiation unit, Prof. Zeinab A. Saleh, in cyclotron facility, AEA, Egypt for performing irradiation of investigated samples and calculation of the irradiation dose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Eltabey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eltabey, M.M., Ali, I.A., Hassan, H.E. et al. Effect of γ-rays irradiation on the structure and magnetic properties of Mg–Cu–Zn ferrites. J Mater Sci 46, 2294–2299 (2011). https://doi.org/10.1007/s10853-010-5071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5071-6

Keywords

Navigation