Skip to main content
Log in

Corrugation of the external surface of multiwall carbon nanotubes by catalytic oxidative etching and its effect on their decoration with metal nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It was established that partial combustion of carbon constituting the walls of multiwall carbon nanotubes (MWCNTs) catalyzed by previously deposited CaCO3 nanoparticles converts parallel graphene layers in a multiwall structure to aggregates formed by nano-onions with a diameter of 5–12 nm. The areas with positive curvature of graphene layers on the external surface of air-etched MWCNTs played the role of docking stations for nickel nanoparticles inserted by sonochemical deposition after removal of the CaCO3. The nickel nanoparticles were located exclusively at the tops of the onions. Formation of nanoscale curvature at the MWCNT support surfaces decreased the average size of Ni nanocrystals at similar loading of 50–60 wt% from 8 to 2 nm. Partial catalytic combustion did not change the concentration of surface carbonyl groups measured by titration, which attributes the observed phenomena directly to the corrugation of the MWCNT surfaces. The catalytic tests revealed a significant increase of catalytic activity of supported Ni catalyst due to corrugating of the external surface of the MWCNT support. After oxidative etching of the MWCNTs, the rate of chloroacetophenone hydrogenation measured with a Ni–MWCNT catalyst increased by a factor of 2 without change in selectivity yielding chlorophenylethanol as the main product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Serp P, Corrias M, Kalck K (2003) Appl Catal A 253:337

    Article  CAS  Google Scholar 

  2. Georgakilas V, Cournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) J Mater Chem 17:2679

    Article  CAS  Google Scholar 

  3. Wildgoose GG, Banks E, Compton RG (2006) Small 2:182

    Article  CAS  Google Scholar 

  4. Menon M, Andriotis AN, Froudakis GE (2000) Chem Phys Lett 320:425

    Article  CAS  Google Scholar 

  5. Shu DJ, Gong XJ (2001) J Chem Phys 114:10922

    Article  CAS  Google Scholar 

  6. Wu M-C, Li C-L, Hu C-K, Chang Y-C, Liaw Y-H, Huang L-W, Chang C-S, Tsong T-T, Hsu T (2006) Phys Rev B 74:125424/1

    CAS  Google Scholar 

  7. Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Nat Nanotechnol 4:562

    Article  CAS  Google Scholar 

  8. Yu G, Gong J, Wang S, Zhu D, He S, Zhu Z (2006) Carbon 44:1218

    Article  CAS  Google Scholar 

  9. Ye J-S, Mo J, Zhang WD, Liu X, Sheu F-S (2008) NANO 3:461

    Article  CAS  Google Scholar 

  10. Ito T, Sun L, Crooks RM (2003) Electrochem Solid State Lett 6:C4

    Article  CAS  Google Scholar 

  11. Aref T, Remeika M, Bezryadin A (2008) J Appl Phys 104:024312/1

    Article  CAS  Google Scholar 

  12. Xia W, Hagen V, Kundu S, Wang Y, Somsen C, Eggler G, Sun G, Grundmeier G, Stratmann M, Muhler M (2007) Adv Mater 19:3468

    Google Scholar 

  13. Graham UM, Dozier A, Khatri RA, Bahome MC, Jewell LL, Mhlanga SD, Coville NJ, Davis BH (2009) Catal Lett 129:39

    Article  CAS  Google Scholar 

  14. Levendis YA, Nam SW, Lowenberg M, Flagan RC, Gavalas GR (1989) Energy Fuels 3:28

    Article  CAS  Google Scholar 

  15. Tomita A (2001) Catal Surv Jpn 5:17

    Article  CAS  Google Scholar 

  16. Savilov SV, Zosimov GA, Lunin VV (2007) Russ. Patent RU 2310601

  17. Wu X, Radovic LR (2005) Carbon 43:333

    Article  CAS  Google Scholar 

  18. Belin T, Epron F (2005) Mater Sci Eng B 119:105

    Article  Google Scholar 

  19. Tenne R, Margulis L, Genut M, Hodes J (1992) Nature 360:444

    Article  CAS  Google Scholar 

  20. Saito Y, Yoshikawa T, Inagaki M, Tomita M, Hayashi T (1993) Chem Phys Lett 204:277

    Article  CAS  Google Scholar 

  21. Szerencsi M, Radnoczi G (2010) Vacuum 84:197

    Article  Google Scholar 

  22. Hou S-S, Chung D-H, Lin T-H (2009) Carbon 47:938

    Article  CAS  Google Scholar 

  23. Gedanken A, Koltypin Y, Perkas N, Besson M, Vradman L, Herskowitz M, Landau MV (2004) Trans Indian Ceram Soc 63:137

    CAS  Google Scholar 

  24. Toebes ML, van Heeswijk UJMP, Bitter JH, van Dillen AJ, de Jong KP (2004) Carbon 42:307

    Article  CAS  Google Scholar 

  25. Blaser H-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Adv Synth Catal 345:103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a joint MSTI-RFBR program: Grants #3-3549 and # 3-5739 (Israel Ministry of Science and Technology) and Grants # 09-03-92482 and 06-03-72032 (Russian Foundation for Basic Research). The authors gratefully acknowledge the help of Dr. A.Erenburg (XRD), Dr. V. Ezersky (HRTEM), and Dr. J. Grinblat (HRTEM) for conducting the materials characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Landau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landau, M.V., Savilov, S.V., Ivanov, A.S. et al. Corrugation of the external surface of multiwall carbon nanotubes by catalytic oxidative etching and its effect on their decoration with metal nanoparticles. J Mater Sci 46, 2162–2172 (2011). https://doi.org/10.1007/s10853-010-5053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5053-8

Keywords

Navigation