Skip to main content
Log in

Preparation, structure, and electrochemical performance of anodes from artificial graphite scrap for lithium ion batteries

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Artificial graphite scrap prepared from petroleum coke with low degree of graphitization was further graphitized under various conditions. Different categories of coke were also treated with the optimum technology. The prepared samples were characterized with X-ray diffraction, ash content determination, morphology observation, and galvanostatic charge and discharge. It was shown in the experiments that the heat treatment temperature should be increased to 2800 °C to remove impurities. Slow heating rate and evacuation technology were beneficial to the growth of graphite crystallite and the improvement of discharge capacity. And the latter condition possessed the larger influences, especially on the growth of crystallite dimension in the b axis direction, degree of graphitization, and discharge capacity. The sample D-3000 prepared from pure needle coke possessed the maximum discharge capacity of 342.1 mAhg−1 among all prepared samples. The linear regression equations between the volume of graphite crystallite and discharge capacity were established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo HJ, Li XH, Zhang XM, Wang HQ, Wang ZX, Peng WJ (2007) New Carbon Materials 22:7

    Article  CAS  Google Scholar 

  2. Kwak G, Park J, Lee J, Kim S, Jung I (2007) J Power Sources 174:484

    Article  CAS  Google Scholar 

  3. Zuo PJ, Yin GP, Ma YL (2007) Electrochim Acta 52:4878

    Article  CAS  Google Scholar 

  4. Zuo PJ, Wang ZB, Yin GP, Jia DC, Cheng XQ, Du CY, Shi PF (2008) J Mater Sci 43:3149. doi:10.1007/s10853-008-2500-x

    Article  CAS  Google Scholar 

  5. Qiao H, Zheng Z, Zhang LZ, Xiao LF (2008) J Mater Sci 43:2778. doi:10.1007/s10853-008-2510-8

    Article  CAS  Google Scholar 

  6. Popova E, Dimitriev Y (2007) J Mater Sci 42:3358. doi:10.1007/s10853-006-0787-z

    Article  CAS  Google Scholar 

  7. Wang D, Ding Η, Song XH, Chen CH (2009) J Mater Sci 44:198. doi:10.1007/s10853-008-3104-1

    Article  CAS  Google Scholar 

  8. Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y (2000) J Electrochem Soc 147:1245

    Article  CAS  Google Scholar 

  9. Zhou YF, Xie S, Chen CH (2005) Electrochim Acta 50:4728

    Article  CAS  Google Scholar 

  10. Zhang HL, Liu SH, Li F, Bai S, Liu C, Tan J, Cheng HM (2006) Carbon 44:2212

    Article  CAS  Google Scholar 

  11. Wang J, Chen MM, Wang CY, Hu BQ, Zheng JM (2010) Mater Lett 64:2281

    Article  CAS  Google Scholar 

  12. Imanishi N, Kashiwagi H, Ichikawa T, Takeda Y, Yamamoto O, Inagaki M (1993) J Electrochem Soc 140:315

    Article  CAS  Google Scholar 

  13. Tatsumi K, Zaghib K, Sawada Y (1997) J Electrochem Soc 144:2968

    Article  Google Scholar 

  14. Kimihito S, Takashi I, Masataka W (1999) Electrochim Acta 44:2185

    Article  Google Scholar 

  15. Gabrielle N, Xiang YS, Monique M, Abdelbast G, Gessie B, Kimio K, Karim Z (2002) J Power Sources 108:86

    Article  Google Scholar 

  16. Arrebola JC, Caballero A, Hernán L, Morales J (2008) J Power Sources 183:310

    Article  CAS  Google Scholar 

  17. Kobayashi H, Sakaebe H, Komoto K, Kaneko S, Kageyama H, Tabuchi M, Tatsumi K, Yonemura M, Kanno R, Kamiyama T (2004) Solid State Ion 175:229

    Article  CAS  Google Scholar 

  18. Yoon SH, Kim HJ, Oh SM (2001) J Power Sources 94:68

    Article  CAS  Google Scholar 

  19. Zhang YG, Wang CY, Yan P (2007) J Inorg Mater 22:622

    CAS  Google Scholar 

  20. Chou CS, Tsou CH, Wang CI (2008) Adv Powder Technol 19:383

    Article  CAS  Google Scholar 

  21. Ohta N, Nagaoka K, Hoshi K, Bitoh S, Inagaki M (2009) J Power Sources 194:985

    Article  CAS  Google Scholar 

  22. Ma SH, Li J, Jing XB, Wang FS (1996) Solid State Ion 86–88:911

    Article  Google Scholar 

  23. Tran TD, Spellman LM, Goldberger WM, Song X, Kinoshita K (1997) J Power Sources 68:106

    Article  CAS  Google Scholar 

  24. Lu W, Chung D (2003) Carbon 41:945

    Article  CAS  Google Scholar 

  25. Alcántara R, Lavel P, Ortiz GF, Tirado JL, Menéndez R, Santamaría R, Jiménez JM (2003) Carbon 41:3003

    Article  Google Scholar 

  26. Lia J, Naga K, Ohzawa Y, Nakajima T, Shames AI, Panich AM (2005) J Fluor Chem 126:265

    Article  Google Scholar 

  27. Kang HG, Park JK, Han BS, Lee H (2006) J Power Sources 153:170

    Article  CAS  Google Scholar 

  28. Ma J, Qin QZ (2005) J Power Sources 148:66

    Article  CAS  Google Scholar 

  29. Funimota K, Yasuda M, Yamashita R, Hisayuki N (1987) High Temp High Press 19:687

    Google Scholar 

  30. Letellier M, Chevallier F, Morcrette M (2007) Carbon 45:1025

    Article  CAS  Google Scholar 

  31. Iijima T, Suzuki K, Matsuda Y (1995) Synth Met 73:9

    Article  CAS  Google Scholar 

  32. Wissler M (2006) J Power Sources 156:142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Bureau of Science and Technology of Hunan Province (No. 00GK1006) and Chinese Ministry of Education (No. 20060532018) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-ling Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Cl., Chen, H. Preparation, structure, and electrochemical performance of anodes from artificial graphite scrap for lithium ion batteries. J Mater Sci 46, 2140–2147 (2011). https://doi.org/10.1007/s10853-010-5050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5050-y

Keywords

Navigation