Skip to main content
Log in

Behavior of electrical resistance of SiCCVD fiber and development of micro-heater with SiCCVD fiber

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Behavior of electrical resistance was examined in room temperature and elevated temperatures up to 1000 °C for two types of SiCCVD fibers with diameters of 140 and 70 μm, respectively. The results showed that electrical resistance showed a good linear relationship with the length of fibers. Electrical resistance decreased as temperature increased, besides, temperature coefficient of electrical resistance was a minus constant, −5.2 × 10−4 °C−1 except that in the first heating. In the first heating, electrical resistance and temperature coefficient increased and had a peak in the range of 550–700 °C owing to the burning of the carbon-rich layer on the fiber surface. It suggested that behavior of electrical resistance of the fibers depended mainly on the carbon core and the carbon-rich layer. It was confirmed that SiCCVD fiber could be used as heating elements for micro-heater and finally a micro-heater using SiCCVD fiber as heating elements was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lu Y, Hirohashi M, Pan J (2001) Mater Sci Technol 17:87–92

    CAS  Google Scholar 

  2. Lu Y, Hirohashi M (1997) Scr Mater 38:273–278

    Article  Google Scholar 

  3. Withers PJ, Clarke AP (1998) Acta Mater 46:6585

    Article  CAS  Google Scholar 

  4. Fu YC, Shi NL, Zhang DZ, Yang R (2006) J Mater Sci Technol 22:452

    CAS  Google Scholar 

  5. Leyens C, Hausmann J, Kumpfert J (2003) Adv Eng Mater 5:399

    Article  CAS  Google Scholar 

  6. Igawa N, Taguchi T, Nozawa T, Snead LL, Hinoki T, McLaughlin JC, Katoh Y, Jitsukawa S, Kohyama A (2005) J Phys Chem Solids 66:551–554

    Article  CAS  Google Scholar 

  7. Toyohiko Y, Katsumi Y (2003) Strength Fract Complex 1:157–165

    Google Scholar 

  8. Ward Y, Young RJ (2004) J Mater Sci 39:6781. doi:10.1023/B:JMSC.0000045606.60263.27

    Article  CAS  Google Scholar 

  9. Shatwell RA, Dyos KL, Prentice C, Ward Y, Young RJ (2001) J Microsc 201:179–188

    Article  CAS  Google Scholar 

  10. Ward Y, Young RJ (2001) J Mater Sci 36:55. doi:10.1023/A:1004830505979

    Article  CAS  Google Scholar 

  11. Lu Y, Hirohashi M, Yashima O (1996) In: JSME (ed) Proceedings of 73rd JSME Springer annual meeting, vol 2. Chiba, Japan, p 280

  12. Lu Y, Hirohashi M, Nomiya T, Araoka Y (1995) In: JSME (ed) Proceedings of 72nd JSME Springer annual meeting, vol 2. Tokyo, Japan, p 250

  13. Lu Y, Hirohashi M, Goda K (1994) In: JSMS (ed) Proceedings of 13th symposium on mater structure reliability, Kawasaki, Japan, p 52

  14. Lu Y, Hirohashi M (2001) Int J Mater Prod Technol 16:50–57

    Article  Google Scholar 

  15. Ichiose N (1996) Electric and electron function materials. Ohm Company, Tokyo

    Google Scholar 

  16. EJ IE (1987) Electrical engineering pocketbook. Ohmusya, Tokyo

    Google Scholar 

  17. Yamada J, Nagai S, Kobayashi Y, Tada Y (1977) Electrical and electronic engineering experimentations. Corona, Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Hao, L. & Hirohashi, M. Behavior of electrical resistance of SiCCVD fiber and development of micro-heater with SiCCVD fiber. J Mater Sci 46, 2085–2090 (2011). https://doi.org/10.1007/s10853-010-5042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5042-y

Keywords

Navigation