Skip to main content
Log in

Structure, magnetic, and electrical studies on vanadium phosphate glasses containing different oxides

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass system with molar composition (60% P2O5–30%V2O5–10%X) where X is Li2O, Na2O, K2O, and BaO was prepared. The density and molar volume indicate that the density decreases while the molar volume increases with increasing ionic radius of doped oxides. IR studies reveal the coexistence of V4+ and V5+ ions (act as glass modifier and glass former, respectively). The observed paramagnetic behavior of samples indicates that V4+ > V5+ (the ratio V4+/V4+ + V5+ > 0.52 as obtained from chemical titration analysis). Mott’s model of conduction was applied to discuss DC electrical conduction mechanism. The prepared glass exhibits semiconducting behavior. However, Ba ion is the only ion which did not contribute to the ionic conduction. The conductivity increases with decreasing ionic radius of doped oxides due to high mobility due to their small size. The effect of hopping distance on the electrical conduction and magnetic properties were discussed. An attempt was done to determine the expected temperature of Ba ionic conduction and its ionic activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hassan AK (1999) J Phys Condens Matter 11:7995

    Article  CAS  Google Scholar 

  2. Burling LD (2005) Novel phosphate glasses for bone regeneration applications. Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

  3. Huang WH, Day DE, Ray CS, Kim CW, Reis STD (2004) Glass Sci Technol 77(5):203

    CAS  Google Scholar 

  4. Huang WH, Zhou N, Day DE, Ray CS (2005) J Inorg Mater 20(4):842

    CAS  Google Scholar 

  5. Ebendorff-Heidepriem H, Ehrt D (2002) Opt Mater 19(3):351

    Article  CAS  Google Scholar 

  6. Ebendorff-Heidepriem H, Riziotis C, Taylor ER (2002) Glass Sci Technol 75:54

    Google Scholar 

  7. Wei, Hu TY, Hwa LG (2001) J Non Cryst Solids 288(1–3):140

    Article  CAS  Google Scholar 

  8. Khattak GD, Mekki A, Wenger LE (2009) J Non Cryst Solids 355:2148

    Article  CAS  Google Scholar 

  9. Assem EE (2005) Key Eng Mater 280–283:327

    Article  Google Scholar 

  10. Salman FE, Shash N, Abou El-Haded H, El-Mansy MK (2002) J Phys Chem Solids 63(11):1957

    Article  CAS  Google Scholar 

  11. Barczyński RJ, Murawski L (2006) Mater Sci-Poland 24(1):221

    Google Scholar 

  12. Barczynski RJ (2005) Optica Applicata XXXV(4):875

    Google Scholar 

  13. Devidas GB, Sankarappa T, Chougule BK, Prasad G (2007) J Non Cryst Solids 353:426

    Article  CAS  Google Scholar 

  14. Assem EE (2005) J Phys D 38:942

    Article  CAS  Google Scholar 

  15. Yarwood J (1973) Electricity and magnetism. University Tutorial Press Ltd, London

    Google Scholar 

  16. Silim HA (2003) Egypt J Solids 26(1):15

    Google Scholar 

  17. Mansour E, El_Damrawi G, Abd El-Maksoud S, Moustafa YM, Doweidar H (2002) Phys Chem Glasses 43(2):80

    CAS  Google Scholar 

  18. Assem EE (2005) Key Eng Mater 280–283:447

    Article  Google Scholar 

  19. Assem EE, Mahmoud KR, Sharshar T, Siligardi C (2006) J Phys D 39:734

    Article  CAS  Google Scholar 

  20. Kashif I, Farouk H, Sanad AM, Aly SA, Assem EE (1992) J Mater Sci 27:122. doi:10.1007/BF02403653

    Article  CAS  Google Scholar 

  21. Rafiqul Ahsan Md, Golam Mortuza M (2005) J Non Cryst Solids 351:2333

    Article  Google Scholar 

  22. Vedeanu N, Cozar O, Ardelean I, Lendl B (2006) J Optoelectron Adv Mater 8(1):78

    CAS  Google Scholar 

  23. Punita Singh, Das SS, Agnihotry SA (2005) J Non Cryst Solids 351:3730

    Article  Google Scholar 

  24. Kashif, Farouk H, Aly SA, Assem EE, Sanad AM (1990) Phys Chem Glasses 31(4):156

    CAS  Google Scholar 

  25. Mazali IO, Alves OL (2004) J Braz Chem Soc 15(4):464

    Article  CAS  Google Scholar 

  26. Znasik P, Mirsolv J (1996) Solid State Ionic 92:145

    Article  CAS  Google Scholar 

  27. Nakamato K (2009) Infrared and Raman spectra of inorganic and coordination compounds, 6th edn. Wiley, Hoboken, New Jersey

    Google Scholar 

  28. Ardelean I, Toderas M (2002) Modern Phys Lett B 16(13):485

    Article  CAS  Google Scholar 

  29. Ardelean I, Peteanu M, Simon V, Ciorcas F (2000) J Mater Sci Technol 16(6):596

    CAS  Google Scholar 

  30. Ardelean I, Ilonca Gh, Simin V, Barbur I, Filip S, Jurcut T (1999) J Magn Magn Mater 196–197:255

    Article  Google Scholar 

  31. Mackenzie JD (1964) Am Ceram Soc 47(5):211

    Article  CAS  Google Scholar 

  32. Ragab HS, Shehab A, Attia G, Abd EI-Kader FH (2003) Egypt J Solids 26(2):151

    Google Scholar 

  33. Goher IA, Assem EE, Abu El-Ela A (1993) Cryst Res Technol 28(1):89

    Article  Google Scholar 

  34. Mogus-Milankovic A, Santic B, Day DE, Ray CS (2001) J Non Cryst Solids 283:119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Assem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assem, E.E., Elmehasseb, I. Structure, magnetic, and electrical studies on vanadium phosphate glasses containing different oxides. J Mater Sci 46, 2071–2076 (2011). https://doi.org/10.1007/s10853-010-5040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5040-0

Keywords

Navigation