Skip to main content
Log in

Functionalization of electrospun magnetically separable TiO2-coated SrFe12O19 nanofibers: strongly effective photocatalyst and magnetic separation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetically separable TiO2-coated SrFe12O19 electrospun nanofibers were obtained successfully by means of sol–gel, electrospinning, and coating technology, followed by heat treatment at 550–650 °C for 3 h. The average diameter of the electrospun fibers was 500–600 nm. The fibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The optimized calcining temperature was determined by XRD and the analysis of decolorizing efficiency of methylene blue (MB) under UV–vis irradiation. The photocatalytic activity of the TiO2-coated SrFe12O19 fibers was investigated using ultraviolet–visible absorbance by following the photooxidative decomposition of a model pollutant dye solution, MB in a photochemical reactor. In contrast to pure TiO2 fibers, the TiO2-coated SrFe12O19 fibers have higher absorption in 250–750 nm wavelength regions. The presence of SrFe12O19 not only broadened the response region of visible-light, but also enhanced the absorbance for UV light. The decolorizing efficiency of MB under UV–vis irradiation was up to 98.19%, which was a little higher than that of Degussa P25 (97.68%). Furthermore, these fibers could be recollected easily with a magnet in a photocatalytic process and had effectively avoided secondary pollution of treated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alves AK, Berutti FA, Clemens FJ, Graule T, Bergmann CP (2009) Mater Res Bull 44:312

    Article  CAS  Google Scholar 

  2. Zhang BP, Zhang JL, Chen F (2008) Res Chem Intermed 34:375

    Article  Google Scholar 

  3. Kim S, Lim SK (2008) Appl Catal B Environ 84:16

    Article  CAS  Google Scholar 

  4. Ao YH, Xu JJ, Fu DG, Yuan CW (2009) J Alloys Compd 471:33

    Article  CAS  Google Scholar 

  5. Kanjwal MA, Barakat NAM, Sheikh FA et al (2010) J Mater Sci 45:1272. doi:10.1007/s10853-009-4078-3

    Article  CAS  Google Scholar 

  6. Hu GJ, Meng XF, Feng XY et al (2007) J Mater Sci 42:7162. doi:10.1007/s10853-007-1609-7

    Article  CAS  Google Scholar 

  7. Santala E, Kemell M, Leskelä M, Ritala M (2009) Nanotechnology 20:035602

    Article  Google Scholar 

  8. Dong SH, Xu KJ, Tian GS (2009) J Mater Sci 44:2548. doi:10.1007/s10853-009-3332-z

    Article  CAS  Google Scholar 

  9. Formo E, Lee E, Campbell D, Xia YN (2008) Nano Lett 8:668

    Article  CAS  Google Scholar 

  10. Li D, Xia Y (2004) Adv Mater 16:1151

    Article  CAS  Google Scholar 

  11. Reneker DH, Chun I (1996) Nanotechnology 7:216

    Article  CAS  Google Scholar 

  12. Frenot A, Chronakis IS (2003) Curr Opin Colloid Interface Sci 8:64

    Article  CAS  Google Scholar 

  13. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223

    Article  CAS  Google Scholar 

  14. Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS (2005) J Appl Polym Sci 96:557

    Article  CAS  Google Scholar 

  15. Li D, McCann JT, Xia Y (2006) J Am Ceram Soc 89:1861

    Article  CAS  Google Scholar 

  16. Guo YZ, Li CJ, Wang JN (2009) Chin J Inorg Chem 25:1018

    CAS  Google Scholar 

  17. Li CJ, Wang JN (2010) Mater Lett 64:586

    Article  CAS  Google Scholar 

  18. Nga TTV, Hien TD, Duong NP, Hoang TD (2008) J Korean Phys Soc 52:1474

    Article  CAS  Google Scholar 

  19. Nga TTV, Duong NP, Hien TD (2009) J Alloys Compd 475:55

    Article  CAS  Google Scholar 

  20. Chu JY, Yu Q, Wu CD, Cao CL, Li N (2008) J Inorg Mater 23:652

    Article  CAS  Google Scholar 

  21. Zuo XW, Fei P, Hu CL, Su BT, Lei ZQ (2009) Chin J Inorg Chem 25:1233

    CAS  Google Scholar 

  22. Wan MX, Li WG (1997) J Polym Sci Polym Chem 35:2129

    Article  CAS  Google Scholar 

  23. Chiou CH, Wu CY, Juang RS (2008) Chem Eng J 139:322

    Article  CAS  Google Scholar 

  24. Ao YH, Xu JJ, Zhang SH, Fu DG (2009) J Phys Chem Solids 70:1042

    Article  CAS  Google Scholar 

  25. Lee JA, Krogman KC, Ma M, Hill RM, Hammond PT, Rutledge GC (2009) Adv Mater 21:1252

    Article  CAS  Google Scholar 

  26. Kim YB, Cho D, Park WH (2010) J Appl Polym Sci 116:449

    Article  CAS  Google Scholar 

  27. Zhan S, Chen D, Jiao X, Song Y (2007) Chem Commun 20:2043

    Article  Google Scholar 

  28. Zhang T, Ge L, Wang X, Gu Z (2008) Polymer 49:2898

    Article  CAS  Google Scholar 

  29. Rizzo L, Koch J, Belgiorno V, Anderson MA (2007) Desalination 211:1

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was partly supported by the Natural Science Foundation of China (Grant no. 51073005), the Beijing Natural Science Foundation (Grant no. KZ201010012012), PHR (IHLB), the 863 Project (Grant no. 2007AA021906), and the 973 Project (Grant no. 2010CB933501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Ju Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CJ., Wang, JN., Li, XY. et al. Functionalization of electrospun magnetically separable TiO2-coated SrFe12O19 nanofibers: strongly effective photocatalyst and magnetic separation. J Mater Sci 46, 2058–2063 (2011). https://doi.org/10.1007/s10853-010-5038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5038-7

Keywords

Navigation