Skip to main content
Log in

Surfactant modified deoxyribonucleic acid films: synthesis, interaction with acridine orange and luminescent properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dye-doped deoxyribonucleic acids (DNA)–tetradecyltrimethylammonium (TTA) films have been prepared. Acridine orange, known as a DNA-binding molecule, can be spontaneously doped by immersing the DNA–TTA film in an acetonitrile solution of the dye. Dye-doped samples exhibit two characteristic absorption bands corresponding to the dye monomer and aggregate, respectively. With the elapse of time after immersion, dye molecules undergo an unusual transformation from the aggregate state to the monomer state, and photoluminescence intensity also increases. Dye molecules in the sample exhibit a pronounced enhancement in their photoluminescence intensity than those in PMMA. The photoluminescence intensity of the samples strongly correlates to both of the dye concentration and monomer/(monomer + aggregates) ratio. Not only the hydrophobic interaction but also the electrostatic force between DNA and dyes play important roles in the formation of the dye-doped samples. It is surmised that monomers and aggregates disperse within the hydrophobic TTA sites in the early stage, and then a part of monomers presumably intercalate between adjacent base pairs of DNA with the elapse of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Adv Mater 11:579

    Article  CAS  Google Scholar 

  2. Mitzi DB (1999) Prog Inorg Chem 48:1

    Article  CAS  Google Scholar 

  3. Antony MJ, Jayakannan M (2010) J Phys Chem B 114:1314

    Article  CAS  Google Scholar 

  4. Nafisi S, Saboury AA, Keramat N, Neault J-F, Tajmir-Riahi H-A (2007) J Mol Struct 827:35

    Article  CAS  Google Scholar 

  5. Hilal H, Taylor JA (2007) Dyes Pigments 75:483

    Article  CAS  Google Scholar 

  6. Hendry LB, Mahesh VB, Bransome ED Jr, Ewing DE (2007) Mutat Res 623:53

    CAS  Google Scholar 

  7. Saenger W (1984) Principal of nucleic acid structure (in Japanese). Springer-Verlag, New York

  8. Bloomfield VA, Crothers DM, Tinoco I Jr (1996) Nucleic acids. University Science Books, Sausalito, CA

  9. Yu F, Ding Y, Gao Y, Zhang S, Chen F (2008) Anal Chim Acta 625:195

    Article  CAS  Google Scholar 

  10. Okahata Y, Tanaka K (1996) Thin Solid Films 284/285:6–8

    Article  Google Scholar 

  11. Tanaka K, Okahata Y (1996) J Am Chem Soc 118:10679

    Article  CAS  Google Scholar 

  12. Kawabe Y, Wang L, Horinouchi S, Ogata N (2000) Adv Mater 12:1281

    Article  CAS  Google Scholar 

  13. Kawabe Y, Wang L, Nakamura T, Ogata N (2002) Appl Phys Lett 81:1372

    Article  CAS  Google Scholar 

  14. Yu Z, Li W, Hagen JA, Zhou Y, Klotzkin D, Grote JG, Steckl AJ (2007) Appl Opt 46:1507

    Article  CAS  Google Scholar 

  15. Krupka O, El-ghayoury A, Rau I, Sahraoui B, JGrote JG, Kajzar F (2008) Thin Solid Films 516:8932

    Article  CAS  Google Scholar 

  16. Kitazawa N, Miyagawa S, Date K, Aroojaeng W, Aono M, Watanabe Y (2009) J Mater Sci 44:4999. doi:10.1007/s10853-009-3764-5

    Article  CAS  Google Scholar 

  17. El-Naggar AK, Batskis JG, Teague K, Gamsey L, Bariogie B (1991) Cytometry 12:330

    Article  CAS  Google Scholar 

  18. Brun AM, Harriman A (1992) J Am Chem Soc 114:3656

    Article  CAS  Google Scholar 

  19. Wang L, Yoshida J, Ogata N (2001) Chem Mater 13:1273

    Article  CAS  Google Scholar 

  20. Luchowski R, Krawczyk S (2003) Chem Phys 293:155

    Article  CAS  Google Scholar 

  21. Lyles MB, Cameron IL (2002) Biophys Chem 96:53

    Article  CAS  Google Scholar 

  22. Hou X, Xu M, Wu L, Shen J (2005) Colloids Surf B 41:181

    Article  CAS  Google Scholar 

  23. Munoz MA, Sama O, Galan M, Guardado P, Carmona C, Balon M (2001) Spectrochim Acta A 57:1049

    Article  Google Scholar 

  24. Nakanaga T, Buchhold K, Ito F (2002) Chem Phys 277:171

    Article  CAS  Google Scholar 

  25. Olmsted J III, Kearns DR (1977) Biochemistry 16:3647

    Article  CAS  Google Scholar 

  26. LePecq JB, Paoletti C (1967) J Mol Biol 27:87

    Article  CAS  Google Scholar 

  27. Forster TH (1972) Chem Phys Lett 17:309

    Article  Google Scholar 

  28. Stryer L (1966) J Am Chem Soc 88:5708

    Article  CAS  Google Scholar 

  29. Burns VWF (1969) Arch Biochem Biophys 133:420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuaki Kitazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitazawa, N., Aroonjaeng, W., Aono, M. et al. Surfactant modified deoxyribonucleic acid films: synthesis, interaction with acridine orange and luminescent properties. J Mater Sci 46, 2036–2040 (2011). https://doi.org/10.1007/s10853-010-5035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5035-x

Keywords

Navigation