Skip to main content
Log in

Preparation of graphene oxide–molecularly imprinted polymer composites via atom transfer radical polymerization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A molecularly imprinted polymer–graphene oxide hybrid material was synthesized by atom transfer radical polymerization. The formation of this hybrid material was verified by Raman spectroscopy and energy dispersive spectrum. Transmission electron microscopy and atomic force microscopy showed that the average thickness of the imprinted polymer grafted on the surface of graphene oxide is about 10.957 nm. Moreover, the hybrids bind the original template 2,4-dichlorophenol with an appreciable selectivity over structurally related compounds. In addition, the method could lead to further development of graphene-based nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282

    Article  CAS  Google Scholar 

  2. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Nat Nanotechnol 3:327

    Article  CAS  Google Scholar 

  3. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Nano Lett 8:1704

    Article  Google Scholar 

  4. Eda G, Chhowalla M (2009) Nano Lett 9:814

    Article  CAS  Google Scholar 

  5. Pasricha R, Gupta S, Srivastava AK (2009) Small 5:2253

    Article  CAS  Google Scholar 

  6. Wang XR, Tabakman SM, Dai H (2008) J Am Chem Soc 130:8152

    Article  CAS  Google Scholar 

  7. Muszynski R, Seger B, Kamat PV (2008) J Phys Chem C 112:5263

    Article  CAS  Google Scholar 

  8. Xu C, Wang X (2009) Small 5:2212

    Article  CAS  Google Scholar 

  9. Zhou XZ, Huang X, Qi X, Wu SX, Xue C, Boey FYC, Yan QY, Chen P, Zhang H (2009) J Phys Chem C 113:10842

    Article  CAS  Google Scholar 

  10. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) J Am Chem Soc 131:8262

    Article  CAS  Google Scholar 

  11. Yang XY, Zhang XY, Ma YF, Huang YS, Wang YS, Chen Y (2009) J Mater Chem 19:2710

    Article  CAS  Google Scholar 

  12. Li FH, Yang HF, Shan CS, Zhang QX, Han D, Ivaska A, Niu L (2009) J Mater Chem 19:4022

    Article  CAS  Google Scholar 

  13. Yang HF, Li FH, Shan CS, Han DX, Zhang QX, Niu L, Ivaska A (2009) J Mater Chem 19:4632

    Article  CAS  Google Scholar 

  14. Li FL, Song JF, Yang HF, Gan SY, Zhang QX, Han DX, Ivaska A, Niu L (2009) Nanotechnology 20:455602

    Article  Google Scholar 

  15. Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Macromol Rapid Commun 31:281

    Article  CAS  Google Scholar 

  16. Haupt K, Mosbach K (2000) Chem Rev 100:2495

    Article  CAS  Google Scholar 

  17. Mahony JO, Nolan K, Smyth MR, Mizaikoff B (2005) Anal Chim Acta 534:31

    Article  CAS  Google Scholar 

  18. Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) Adv Drug Deliv Rev 57:1795

    Article  CAS  Google Scholar 

  19. Yun YH, Shon HK, Yoon SD (2009) J Mater Sci 44:6206. doi:10.1007/s10853-009-3863-3

    Article  CAS  Google Scholar 

  20. Wang Z, Wu G, Wang M, He C (2009) J Mater Sci 44:2694. doi:10.1007/s10853-009-3353-7

    Article  CAS  Google Scholar 

  21. Li Y, Li X, Dong C, Qi J, Han X (2010) Carbon 48:3427

    Article  CAS  Google Scholar 

  22. Wang JS, Matyjaszewski K (1995) Macromolecules 28:7572

    Article  CAS  Google Scholar 

  23. Wei X, Li X, Husson SM (2005) Biomacromolecules 6:1113

    Article  CAS  Google Scholar 

  24. Li X, Husson SM (2006) Biosens Bioelectron 22:336

    Article  Google Scholar 

  25. Wei X, Husson SM (2007) Ind Eng Chem Res 46:2117

    Article  CAS  Google Scholar 

  26. Zu B, Pan G, Guo X, Zhang Y, Zhang H (2009) J Polym Sci A 47:3257

    Article  CAS  Google Scholar 

  27. Zu B, Zhang Y, Guo X, Zhang H (2010) J Polym Sci A 48:532

    Article  CAS  Google Scholar 

  28. Pyun J, Kowalewski T, Matyjaszewski KS (2003) Macromol Rapid Commun 24:1043

    Article  CAS  Google Scholar 

  29. Chen R, Feng W, Zhu S, Botton G, Ong B, Wu Y (2006) J Polym Sci A 44:1252

    Article  CAS  Google Scholar 

  30. Sha K, Li DS, Li Y, Wang S, Wang J (2007) J Mater Sci 42:4916. doi:10.1007/s10853-006-0397-9

    Article  CAS  Google Scholar 

  31. Kim JB, Bruening ML, Baker GL (2000) J Am Chem Soc 122:7616

    Article  CAS  Google Scholar 

  32. Chen R, Maclaughlin S, Botton G, Zhu S (2009) Polymer 50:4293

    Article  CAS  Google Scholar 

  33. Vestal CR, Zhang ZJ (2002) J Am Chem Soc 124:14312

    Article  CAS  Google Scholar 

  34. Cui T, Zhang J, Wang J, Cui F, Chen W, Xu F, Wang Z, Zhang K, Yang B (2005) Adv Funct Mater 15:481

    Article  CAS  Google Scholar 

  35. Kim YS, Kadla JF (2010) Biomacromolecules 11:981

    Article  CAS  Google Scholar 

  36. Xu FJ, Wang ZH, Yang WT (2010) Biomaterials 31:3139

    Article  CAS  Google Scholar 

  37. Baskaran D, Mays JM, Bratcher MS (2004) Angew Chem Int Ed 43:2138

    Article  CAS  Google Scholar 

  38. Choi WS, Ryu SH (2010) J Appl Polym Sci 116:2930

    CAS  Google Scholar 

  39. Yang Y, Wang J, Zhang J, Liu J, Yang X, Zhao H (2009) Langmuir 25:11808

    Article  CAS  Google Scholar 

  40. Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) J Mater Chem 20:1982

    Article  CAS  Google Scholar 

  41. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  42. Hong CY, You YZ, Pan CY (2005) Chem Mater 17:2247

    Article  CAS  Google Scholar 

  43. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110:8535

    Article  CAS  Google Scholar 

  44. Ferralis N (2010) J Mater Sci 45:5135. doi:10.1007/s10853-010-4673-3

    Article  CAS  Google Scholar 

  45. Kotov NA, Dekany I, Fendler JH (1996) Adv Mater 8:637

    Article  CAS  Google Scholar 

  46. Thomsen C, Reich S (2000) Phys Rev Lett 85:5214

    Article  CAS  Google Scholar 

  47. Ferrari AC, Robertson J (2000) Phys Rev B 61:14095

    Article  CAS  Google Scholar 

  48. Choi WS, Choi SH, Hong B, Lim DG, Yang KJ, Lee JH (2006) Mater Sci Eng C 26:1211

    Article  CAS  Google Scholar 

  49. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Nano Lett 8:36

    Article  CAS  Google Scholar 

  50. Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) J Mater Chem 19:7098

    Article  CAS  Google Scholar 

  51. Manna AK, Pati SK (2009) Chem Asian J 4:855

    Article  CAS  Google Scholar 

  52. Li Y, Li X, Li Y, Dong C, Jin P, Qi J (2009) Biomaterials 30:3205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors were grateful to support of the National Natural Science Foundation of China (50878061, 21076051), and the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (2010TS06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Wu, S., Chen, S. et al. Preparation of graphene oxide–molecularly imprinted polymer composites via atom transfer radical polymerization. J Mater Sci 46, 2024–2029 (2011). https://doi.org/10.1007/s10853-010-5033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5033-z

Keywords

Navigation