Journal of Materials Science

, Volume 46, Issue 6, pp 1824–1829 | Cite as

Stabilization of metastable tetragonal zirconia nanocrystallites by surface modification

Article

Abstract

Metastable tetragonal zirconia nanocrystallites were studied in humid air and in water at room temperature (RT). A stabilizing effect of different surfactants on the tetragonal phase was observed. Furthermore, the phase stability of silanized metastable tetragonal zirconia nanocrystallites was tested by prolonged boiling in water. The samples were analyzed with X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Changes in the monoclinic volume fraction in the samples were calculated. A number of surfactants were screened for their ability to stabilize the tetragonal phase upon exposure to humidity. Only silanes and phosphate esters of these were able to stabilize the tetragonal phase in water. Even as small amounts of silanes as 0.25 silane molecule per nm2 are able to stabilize the tetragonal phase in water at RT. Aminopropyl trimethoxy silane and γ-methacryloxypropyl trimethoxy silane were even capable of preventing phase transformation during boiling for 48 h in water.

References

  1. 1.
    Marcus R, Diebold U, Gonzalez RD (2003) Catal Lett 86:151CrossRefGoogle Scholar
  2. 2.
    Reddy BM, Sreekanth PM, Lakshmanan P (2005) J Mol Catal A Chem 237:93CrossRefGoogle Scholar
  3. 3.
    Mishra MK, Tyagi B, Jasra RV (2004) J Mol Catal A Chem 223:61CrossRefGoogle Scholar
  4. 4.
    Becker J, Hald P, Bremholm M et al (2008) ACS Nano 2:1058CrossRefGoogle Scholar
  5. 5.
    Zhang X, Kolb BU, Hanggi DA et al (2001) WO 01/30305 A1Google Scholar
  6. 6.
    Sato T, Ohtaki S, Endo T et al (1985) J Am Ceram Soc 68:C320CrossRefGoogle Scholar
  7. 7.
    Sato T, Shimada M (1985) J Mater Sci 20:3988. doi:10.1007/BF00552389 CrossRefGoogle Scholar
  8. 8.
    Sato T, Shimada M (1985) Am Ceram Soc Bull 64:1382Google Scholar
  9. 9.
    Murase Y, Kato E (1983) J Am Ceram Soc 66:196CrossRefGoogle Scholar
  10. 10.
    Murase Y, Kato E (1979) J Am Ceram Soc 62:527CrossRefGoogle Scholar
  11. 11.
    Yoshimura M (1988) Am Ceram Soc Bull 67:1950Google Scholar
  12. 12.
    Yoshimura M, Noma T, Kawabata K et al (1987) J Mater Sci Lett 6:465CrossRefGoogle Scholar
  13. 13.
    Kim YS, Jung CH, Park JY (1994) J Nucl Mater 209:326CrossRefGoogle Scholar
  14. 14.
    Guo X (2001) J Mater Sci 36:3737. doi:10.1023/A:1017925800904 CrossRefGoogle Scholar
  15. 15.
    Guo X (1999) J Phys Chem Solids 60:539CrossRefGoogle Scholar
  16. 16.
    Guo X (1998) Solid State Ionics 112:113CrossRefGoogle Scholar
  17. 17.
    Skovgaard M, Ahniyaz A, Sørensen BF et al (2010) J Eur Ceram Soc 30:2749CrossRefGoogle Scholar
  18. 18.
    Toraya H, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C119Google Scholar
  19. 19.
    Skovgaard M, Almdal K, van Lelieveld A (2010) J Mater Sci 54(22):6271. doi:10.1007/s10853-010-4835-3 CrossRefGoogle Scholar
  20. 20.
    Gao W, Dickinson L, Grozinger C et al (1996) Langmuir 12:6429CrossRefGoogle Scholar
  21. 21.
    Van Lelieveld A, Nielsen MS, Almdal K et al (2007) EP1996144-A2, US2010016465-A1Google Scholar
  22. 22.
    Blitz JP, Murthy RSS, Leyden DE (1987) J Am Chem Soc 109:7141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.DentoFit A/SRoskildeDenmark
  2. 2.Department of Micro- and NanotechnologyTechnical University of DenmarkRoskildeDenmark

Personalised recommendations