One-step and iterative thermo-mechanical treatments to enhance Σ3n boundaries in a Ti-modified austenitic stainless steel

Abstract

The article discusses the results of a study on low-strain thermo-mechanical (one-step and iterative) processing to enhance Σ3n boundaries in a Ti-modified austenitic stainless steel (alloy D9). Solution annealed (SA) specimens were subjected to 10% thickness reduction by rolling followed by annealing at 1173, 1223, and 1273 K for 0.5, 1, and 2 h. Anomalous grain growth with moderate increase in Σ3n boundaries was observed after annealing at 1,173 K for 0.5 to 2 h. Prolific multiple twinning with minimum deviation of Σ3 and Σ9 boundaries from ideal orientation was achieved after annealing at 1,273 K for 0.5 to 2 h. A significant disruption in random boundary connectivity was obtained in these conditions due to the presence of large number of Σ3-Σ3-Σ9/Σ3-Σ9-Σ27 triple junctions. Iterative processing (up to 4 cycles) employing 10% thickness reduction followed by annealing at 1,273 K for 0.5 h revealed fluctuations in the evolution of Σ3 boundaries. The Σ3 fraction increased after 2nd and 4th iteration and there is a drop after 3rd iteration. This was attributed to the increased driving force for grain boundary migration due to dislocation pile-up at twin boundaries during earlier iterations. A two step iterative processing comprising of 10% deformation followed by annealing at 1,273 K for 0.5 h is the recommended thermo-mechanical processing to achieve enhanced fraction of Σ3n boundaries (~73%) in alloy D9.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    The twin boundaries that were excluded in the calculation of average grain size were Σ3 and Σ9 boundaries within a tolerance of 5°.

  2. 2.

    The hardness was measured with a FIE VM 50 Vickers hardness tester with 5 kg load for 15 s dwell time.

  3. 3.

    The color-scale-coded KAM map is plotted on the basis of first-neighbor kernel parameter with a maximum misorientation angle of 5°.

References

  1. 1.

    Watanabe T (1984) Res Mech 11:47

    CAS  Google Scholar 

  2. 2.

    Li C, Williams DB (2005) Phil Mag 85:2023

    CAS  Article  Google Scholar 

  3. 3.

    Krupp U (2008) J Mater Sci 43:3908. doi:10.1007/s10853-007-2363-6

    CAS  Article  Google Scholar 

  4. 4.

    Bechtle S, Kumar M, Somerday BP, Launey ME, Ritchie RO (2009) Acta Mater 57:4148

    CAS  Article  Google Scholar 

  5. 5.

    Kokawa H (2005) J Mater Sci 40:927. doi:10.1007/s10853-005-6511-6

    CAS  Article  Google Scholar 

  6. 6.

    Tan L, Sridharan K, Allen TR, Nanstad RK, McClintock DA (2008) J Nucl Mater 374:270

    CAS  Article  Google Scholar 

  7. 7.

    Jones R, Randle V (2010) Mater Sci Eng 527:4275

    Article  Google Scholar 

  8. 8.

    Kokawa H, Shimada M, Michiuchi M, Wang ZJ, Sato YS (2007) Acta Mater 55:5401

    CAS  Article  Google Scholar 

  9. 9.

    Watanabe T (1993) Mater Sci Eng A 166:11

    Article  Google Scholar 

  10. 10.

    Kobayashi S, Inomata T, Kobayashi H, Tsurekawa S, Watanabe T (2008) J Mater Sci 43:3792. doi:10.1007/s10853-007-2236-z

    CAS  Article  Google Scholar 

  11. 11.

    Watanabe T, Tsurekawa S, Kobayashi S, Yamaura S (2005) Mater Sci Eng A 410–411:140

    Google Scholar 

  12. 12.

    Reed BW, Kumar M, Minich RW, Rudd RE (2008) Acta Mater 56:3278

    CAS  Article  Google Scholar 

  13. 13.

    Lejcek P, Hofmann S, Paidar V (2003) Acta Mater 51:3951

    CAS  Article  Google Scholar 

  14. 14.

    Saylor DM, El-Dasher BS, Rollett AD, Rohrer GS (2004) Acta Mater 52:3649

    CAS  Article  Google Scholar 

  15. 15.

    Kim CS, Hu Y, Rohrer GS, Randle V (2005) Scripta Mater 52:633

    CAS  Article  Google Scholar 

  16. 16.

    Coleman M, Randle V (2008) Metall Mater Trans A 39:2175

    Article  Google Scholar 

  17. 17.

    Rohrer GS, Randle V, Kim CS, Hu Y (2006) Acta Mater 54:4489

    CAS  Article  Google Scholar 

  18. 18.

    Randle V, Jones R (2009) Mater Sci Eng A 524:134

    Article  Google Scholar 

  19. 19.

    Owen G, Randle V (2006) Scripta Mater 55:959

    CAS  Article  Google Scholar 

  20. 20.

    Wang W, Guo H (2007) Mater Sci Eng A 445–446:155

    Google Scholar 

  21. 21.

    Chowdhury SG, Kumar P, Das A, Das SK, Mahato B, De PK (2008) Phil Mag Lett 88:407

    CAS  Article  Google Scholar 

  22. 22.

    Randle V (2004) Acta Mater 52:4067

    CAS  Article  Google Scholar 

  23. 23.

    Michiuchi M, Kokawa H, Wang ZJ, Sato YS, Sakai K (2006) Acta Mater 54:5179

    CAS  Article  Google Scholar 

  24. 24.

    Fang X, Zhang K, Guo H, Wang W, Zhou B (2008) Mater Sci Eng A 487:7

    Article  Google Scholar 

  25. 25.

    Chowdhury SG, Singh R (2008) Scripta Mater 58:1102

    CAS  Article  Google Scholar 

  26. 26.

    Singh R, Chowdhury SG, Chattoraj I (2008) Metall Mater Trans A 39:2504

    Article  Google Scholar 

  27. 27.

    Engelberg DL, Humphreys FJ, Marrow TJ (2008) J Microsc 230:435

    CAS  Article  Google Scholar 

  28. 28.

    Engelberg DL, Newman RC, Marrowa TJ (2008) Scripta Mater 59:554

    CAS  Article  Google Scholar 

  29. 29.

    Mandal S, Bhaduri AK, Sarma VS (2009) Mater Sci Eng A 515:134

    Article  Google Scholar 

  30. 30.

    Brandon DG (1966) Acta Metall 14:1479–1484

    CAS  Article  Google Scholar 

  31. 31.

    Jorge-Badiola D, Iza-Mendia A, Gutierrez I (2007) J Microsc 228:373

    CAS  Article  Google Scholar 

  32. 32.

    Lim LC, Raj R (1984) Acta Metall 32:1177

    CAS  Article  Google Scholar 

  33. 33.

    Randle V, Owen G (2006) Acta Mater 54:1777

    CAS  Article  Google Scholar 

  34. 34.

    Randle V (1999) Acta Mater 47:4187

    CAS  Article  Google Scholar 

  35. 35.

    Reed BW, Minich RW, Rudd RE, Kumar M (2004) Acta Cryst A60:263

    CAS  Google Scholar 

  36. 36.

    Reed BW, Kumar M (2006) Scripta Mater 54:1029

    CAS  Article  Google Scholar 

  37. 37.

    Kumar M, Schwartz AJ, King WE (2002) Acta Mater 50:2599

    CAS  Article  Google Scholar 

  38. 38.

    Gleiter H (1969) Acta Metall 17:1421

    CAS  Article  Google Scholar 

  39. 39.

    Randle V, Coleman M (2009) Acta Mater 57:3410

    CAS  Article  Google Scholar 

  40. 40.

    Randle V, Davies H (2002) Metall Mater Trans A 33:1853

    Article  Google Scholar 

  41. 41.

    King AH (1985) Scripta Metall 19:1517

    Article  Google Scholar 

  42. 42.

    Randle V (2010) Mater Sci Technol 26:253

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Satyam Suwas, Department of Materials Engineering, IISc Bangalore, India, for extending the rolling mill facility during this study. Thanks are also due to Mr. Nilesh Gurao, Department of Materials Engineering, IISc Bangalore, for his help during rolling. One of the authors (VSS) thanks the Indo-US Science and Technology Forum (IUSSTF) for a sabbatical research fellowship during the period this article was finalized.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumantra Mandal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mandal, S., Bhaduri, A.K. & Subramanya Sarma, V. One-step and iterative thermo-mechanical treatments to enhance Σ3n boundaries in a Ti-modified austenitic stainless steel. J Mater Sci 46, 275–284 (2011). https://doi.org/10.1007/s10853-010-4982-6

Download citation

Keywords

  • Twin Boundary
  • Triple Junction
  • Solution Anneal
  • Electron Back Scatter Diffraction
  • Coincidence Site Lattice Boundary