Skip to main content
Log in

FCC to HCP transformation kinetics in a Co–27Cr–5Mo–0.23C alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work the kinetic aspects associated with the FCC → HCP martensitic transformation in a Co–27Cr–5Mo–0.23C alloy processed by powder metallurgy were investigated. In situ X-ray diffraction during isochronous heat treatments in a hot stage indicated that a fully metastable FCC matrix transforms rather fast at temperatures above 725 °C and reaches a maximum transformation into the HCP phase at 940 °C. Alternatively, when the matrix is HCP, some HCP martensite reverts to metastable FCC. Apparently, at low temperatures carbon excess in the HCP martensite promotes the reversal to metastable FCC. In addition, the volume percent of ε-martensite precipitated from stable FCC was determined as a function of time and temperature during isothermal aging between 675 and 900 °C. From these results, TTT diagrams were plotted for a 1% HCP transformed martensite. Maximum transformation rates were found to occur between 825 and 850 °C and activation energies, Q s of 41–52 kcal/mol were estimated from the experimental outcome. The aged microstructures indicated that below 800 °C, the isothermal transformation was dominated by a lamellar morphology. Nevertheless, aging above 800 °C promoted carbide nucleation and coarsening along the grain boundaries independently of the FCC → HCP martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smethurst E, Waterhouse RB (1977) J Mater Sci 12:1781. doi:10.1007/BF00566238

    Article  CAS  Google Scholar 

  2. Rose RM (1974) Materials for internal prostheses. Yearbook of science and technology. McGraw Hill, New York

    Google Scholar 

  3. Buckley DH (1968) Cobalt 38:20

    CAS  Google Scholar 

  4. Huang P, Salinas-Rodriguez A, Lopez HF (1999) Mater Sci Technol 15:1324

    CAS  Google Scholar 

  5. Vander Sande JB, Coke JR, Wulff J (1976) Metall Trans A 7A:389

    CAS  Google Scholar 

  6. Saldívar-García AJ, Maní A, Salinas-Rodríguez A (1999) Metall Mater Trans A 30A:1177

    Article  Google Scholar 

  7. Saldívar-García AJ (1998) Doctoral Thesis CINVESTAV-IPN Unidad Saltillo, Mexico

  8. Rajan K, Vander Sande JB (1982) J Mater Sci 17:769. doi:10.1007/BF00540374

    Article  CAS  Google Scholar 

  9. Cong Dahn N, Morphy D, Rajan K (1984) Acta Metall 32:1317

    Article  Google Scholar 

  10. Lopez HF, Saldívar-García AJ (2008) Metall Mater Trans A 7A:389

    Google Scholar 

  11. Salinas-Rodriguez A, Rodriguez JL (1996) J Biomed Mater Res 31:409

    Article  CAS  Google Scholar 

  12. Huang P (1997) Doctoral Thesis, University of Wisconsin-Milwaukee, USA

  13. Saldívar-García AJ, Maní A, Salinas-Rodríguez A (1999) Scr Mater 40:717

    Article  Google Scholar 

  14. Rajan K (1982) Metall Trans A 13A:1161

    Google Scholar 

  15. Taylor RNJ, Waterhouse RB (1986) J Mater Sci 21:1990. doi:10.1007/BF00547938

    Article  CAS  Google Scholar 

  16. Lee SH, Takahashi E, Nomura N, Chiba A (1990) Mater Trans 47:287

    Article  Google Scholar 

  17. Ramirez LE, Castro M, Mendez M, Lacaze J, Herrera M, Lesoult G (2002) Scr Mater 47:811

    Article  CAS  Google Scholar 

  18. Sage M, Gillaud C (1950) Rev Met 49:139

    Google Scholar 

  19. Olson GB, Cohen M (1976) Metall Trans A 7A:1915

    CAS  Google Scholar 

  20. Saldívar-García AJ, López HF (2004) Metall Mater Trans A 35A:2517

    Article  Google Scholar 

  21. Centre D′Information du Cobalt (1960) Cobalt Monograph, Belgium

  22. Pati SR, Cohen M (1969) Acta Metall 17:189

    Article  CAS  Google Scholar 

  23. Magee CL (1971) Metall Trans A 2A:2419

    Google Scholar 

  24. Fullman RL (1953) Trans Am Inst Min Eng 197:447

    CAS  Google Scholar 

  25. Olson GB, Cohen M (1975) Metall Trans A 6A:791

    CAS  Google Scholar 

  26. Hirth JP (1970) Metall Trans A 1A:2367

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Lopez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turrubiates-Estrada, R., Salinas-Rodriguez, A. & Lopez, H.F. FCC to HCP transformation kinetics in a Co–27Cr–5Mo–0.23C alloy. J Mater Sci 46, 254–262 (2011). https://doi.org/10.1007/s10853-010-4969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4969-3

Keywords

Navigation