Skip to main content

Advertisement

Log in

The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanoporous anodic aluminum oxide (AAO) membranes can be fabricated with highly controllable thickness and porosity, making them ideal for filtration applications. Use of these membranes is currently limited largely due to their size and overall fragility. The objective of this research was to improve mechanical properties of AAO membranes through use of high temperature heat treatment to induce phase transformations in the material. A repeatable two-step anodization process was developed for consistent sample fabrication and heat treatments were performed at 900 °C and 1200 °C in air. The pore morphology and phase composition of the as-anodized and heat-treated membranes were then observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness testing was utilized to evaluate the mechanical behavior of the membranes before and after heat treatment. As-anodized AAO membranes were determined to be amorphous, and membranes heat-treated to 900 °C and 1200 °C were transformed to crystalline phases while retaining their original porous structure. Heat treatment to 900 °C resulted in formation of the γ-alumina transition phase in the skeleton regions of the membrane and nanocrystalline regions of α-alumina throughout the structure, while heat treatment to 1200 °C completely transformed the material to the stable α-alumina structure. The microhardness testing showed an increase in hardness from 2.5 ± 0.4 GPa to 4.7 ± 1.0 GPa in the transformation from amorphous to α-alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Keller F, Hunter MS, Robinson DL (1953) J Electrochem Soc 100:411

    Article  CAS  Google Scholar 

  2. Masuda H, Fukuda K (1995) Science 268:1466

    Article  CAS  Google Scholar 

  3. Li XZ, Wei XW, Ye Y (2009) Mater Lett 63:578

    Article  CAS  Google Scholar 

  4. Sauer G, Brehm G, Schneider S, Nielsch K, Wehrspohn RB, Choi J, Hofmeister H, Gosele U (2002) J Appl Phys 91:3243

    Article  CAS  Google Scholar 

  5. Masuda H, Satoh M (1995) Jpn J Appl Phys 35:L126

    Article  Google Scholar 

  6. Nagaura T, Takeuchi F, Yamauchi Y, Wada K, Inoue S (2008) Electrochem Commun 10:681

    Article  CAS  Google Scholar 

  7. Thompson GE, Wood GC (1981) Nature 290:230

    Article  CAS  Google Scholar 

  8. Vrublevsky I, Parkoun V, Schreckenbach J, Marx G (2003) Appl Surf Sci 220:51

    Article  CAS  Google Scholar 

  9. Ko S, Lee D, Jee S, Park H, Lee K, Hwang W (2006) Thin Solid Films 515:1932

    Article  CAS  Google Scholar 

  10. Palibroda E, Indrea E (1994) Thin Solid Films 240:88

    Article  CAS  Google Scholar 

  11. Gall K, Liu Y, Routkevitch D, Finch DS (2006) J Eng Mater Technol 128:225

    Article  CAS  Google Scholar 

  12. Xia Z, Riester L, Sheldon BW, Curtin WA, Liang J, Yin A, Xu JM (2004) Rev Adv Mater Sci 6:131

    CAS  Google Scholar 

  13. Sui YC, Cui BZ, Martinez L, Perez R, Sellmyer DJ (2002) Thin Solid Films 406:64

    Article  CAS  Google Scholar 

  14. Mardilovich PP, Govyadinoy AN, Mukhurov NI, Rzhevskii AM, Paterson R (1995) J Membr Sci 98:131

    Article  CAS  Google Scholar 

  15. Levin I, Brandon D (1998) J Am Ceram Soc 81:1995

    Article  CAS  Google Scholar 

  16. Damani RJ, Makroczy P (2000) J Eur Ceram Soc 20:867

    Article  CAS  Google Scholar 

  17. Dwivedi RK, Gowda G (1985) J Mater Sci Lett 4:331

    Article  CAS  Google Scholar 

  18. Kirchner A, MacKenzie JD, Brown IWM, Kemmitt T, Bowden ME (2007) J Membr Sci 287:264

    Article  CAS  Google Scholar 

  19. Mata-Zamora ME, Saniger JM (2005) Rev Mex Fis 51:502

    CAS  Google Scholar 

  20. Ozao R, Ochiai M, Ichimura N, Takahashi H, Inada T (2000) Thermochim Acta 352–353:91

    Article  Google Scholar 

  21. Xiong G, Elam JW, Feng H, Han CY, Wang HH, Iton LE, Curtiss LA, Pellin MJ, Kung M, Kung H, Stair PC (2005) J Phys Chem B 109:14059

    Article  CAS  Google Scholar 

  22. Kindratenko V (1997) Ph.D. Thesis, University of Antwerp, Belgium, 182 pp

  23. Fernandez-Romero L, Montero-Moreno JM, Pellicer E, Peiró F, Cornet A, Morante JR, Sarret M, Müller C (2008) Mater Chem Phys 111:542

    Article  CAS  Google Scholar 

  24. Lu J, Lu W (2010) In: Proceedings of the 4th international conference on bioinformatics and biomedical engineering (iCBBE), Chengdu, 18–20 June 2010, p 1

  25. Le Coz F, Arurault L, Fontorbes S, Vilar V, Datas L, Winterton P (2010) Surf Interface Anal 42:227

    Article  Google Scholar 

  26. Sinani AB, Dynkin NK, Lytvinov LA, Konevsky PV, Andreev EP (2009) Bull Russ Acad Sci Phys 73:1380

    Article  Google Scholar 

  27. Krell A, Blank P, Ma H, Hutzler T, van Bruggen MPB, Apetz R (2003) J Am Ceram Soc 86:12

    Article  CAS  Google Scholar 

  28. Ng KY, Lin Y, Ngan AHW (2009) Acta Mater 57:2710

    Article  CAS  Google Scholar 

  29. Alvey CE, Wood GC (1981) In: Proceedings of the 3rd South African corrosion conference, Pretoria, 17–19 March 1981

Download references

Acknowledgements

Funding for the research was provided by the National Institute of Health (grant NIAID_1R21AI081638-01A2). The authors wish to thank The Loewy Family Foundation for the support through the Loewy Graduate Fellowship (M.K. McQuaig, Jr.), Loewy Visiting Professorship (A. Toro) and Loewy Professorship (W.Z. Misiolek). The authors also thank Adrián Gómez from the National University of Colombia for his valuable help with DSC and TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Toro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McQuaig, M.K., Toro, A., Van Geertruyden, W. et al. The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide. J Mater Sci 46, 243–253 (2011). https://doi.org/10.1007/s10853-010-4966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4966-6

Keywords

Navigation