Skip to main content
Log in

Crystallization behavior of poly (vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The non-isothermal and isothermal crystallization of poly (vinylidene fluoride) (PVDF)/multiple-walled carbon nanotubes (MWNTs) composites containing pristine (MWNT1) and carboxyl group (–COOH) functionalized MWNT (MWNT2) were investigated. The effects of MWNT on the crystallization behavior of PVDF were dependent on the dispersion state of MWNT. Pristine MWNT could increase the nucleation due to better dispersion, and thus, PVDF/MWNT1 composites exhibited higher crystallization peak temperatures (T cps) and crystallinities (X cs) compared with PVDF/MWNT2 composites. Meanwhile, the formation of MWNT network confined the growth of crystals. For the isothermal crystallization, MWNT acted as nucleating agents, and the crystallization rate constant k was increased with the addition of MWNT. Besides, the half crystallization time, t 0.5, was remarkably shortened with the increase of MWNT content, especially for the pristine MWNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lovinger AJ (1983) Science 220:1115

    Article  CAS  Google Scholar 

  2. Broadhurst MG, Davis GT (1981) Ferroelectrics 32:177

    Article  CAS  Google Scholar 

  3. Narula GK, Pillai PKC (1989) J Mater Sci Lett 8:627

    Article  CAS  Google Scholar 

  4. Gregorio JR, Ueno EM (1999) J Mater Sci 34:4489. doi:10.1023/A:1004641322544

    Article  CAS  Google Scholar 

  5. Hsu SL, Lu FJ, Waldman DA, Muthukumar M (1985) Macromolecules 18:2583

    Article  CAS  Google Scholar 

  6. Sencadas V, Gregorio R Jr, Lanceros-Mendez S (2009) J Macromol Sci Part B Phys 48:514

    Article  CAS  Google Scholar 

  7. Gregorio R, Cestari M (1994) J Polym Sci Part B Polym Phys 32:859

    Article  CAS  Google Scholar 

  8. Dillon DR, Tenneti KK, Li CY, Ko FK, Sics I, Hsiao BS (2006) Polymer 47:1678

    Article  CAS  Google Scholar 

  9. He QJ, Zhang AM (2008) J Mater Sci 43:820. doi:10.1007/s10853-007-2153-1

    Article  CAS  Google Scholar 

  10. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62:1993

    Article  CAS  Google Scholar 

  11. Zou YB, Feng YC, Wang L, Liu XB (2004) Carbon 42:271

    Article  CAS  Google Scholar 

  12. Zhang FH, Wang RG, He XD, Wang C, Ren LN (2009) J Mater Sci 44:3574. doi:10.1007/s10853-009-3484-x

    Article  CAS  Google Scholar 

  13. Xu DH, Wang ZG (2008) Polymer 49:330

    Article  CAS  Google Scholar 

  14. Haggenmueller R, Fischer JE, Winey KI (2006) Macromolecules 39:2964

    Article  CAS  Google Scholar 

  15. Zhao YY, Qiu ZB, Yang WT (2008) J Phys Chem B 112:16461

    Article  CAS  Google Scholar 

  16. Xu Y, Jia HB, Piao JN, Ye SR, Huang J (2008) J Mater Sci 43:417. doi:10.1007/s10853-007-2161-1

    Article  CAS  Google Scholar 

  17. Wang M, Shi JH, Pramoda KP, Goh SH (2007) Nanotechnology 18:235701

    Article  Google Scholar 

  18. Kim GH, Hong SM (2007) Mol Cryst Liq Cryst 472:161/[551]

    Google Scholar 

  19. Huang XY, Jiang PK, Choung K, Liu F, Yin Y (2009) Eur Polym J 45:377

    Article  CAS  Google Scholar 

  20. Levi N, Czerw R, Xing SY, Iyer P, Carroll DL (2004) Nano Lett 4:1267

    Article  CAS  Google Scholar 

  21. He LH, Sun J, Zheng XL, Xu Q, Song R (2010) J Appl Polym Sci. doi:10.1002/app.32907

  22. Nam YW, Kim WN, Cho YH et al (2007) Macromol Symp 249–250:478

    Article  Google Scholar 

  23. Mago G, Kalyon DM, Fisher FT (2008) J Nanomater 2008: (Article ID 759825, 8 pages)

  24. Zhao ZD, Zheng WT, Yu WX, Long BH (2009) Carbon 47:2118

    Article  CAS  Google Scholar 

  25. Pötschke P, Dudkin SM, Alig I (2003) Polymer 44:5023

    Article  Google Scholar 

  26. Huang YY, Terentjev EM (2008) Int J Mater Form 1:63

    Article  Google Scholar 

  27. Zhang QH, Fang F, Zhao X, Li YZ, Zhu MF, Chen DJ (2008) J Phys Chem B 112:12606

    Article  CAS  Google Scholar 

  28. Grossiord N, Miltner HE, Loos J, Meuldijk J, Mele BV, Koning CE (2007) Chem Mater 19:3787

    Article  CAS  Google Scholar 

  29. Jiang J, Liu H, Hu Y (1998) Macromol Theory Simul 7:113

    CAS  Google Scholar 

  30. Li LY, Li CY, Ni CY, Rong L, Hsiao B (2007) Polymer 48:3452

    Article  CAS  Google Scholar 

  31. Marega C, Marigo A (2003) Eur Polym J 39:1713

    Article  CAS  Google Scholar 

  32. Jog JP (2006) Mater Sci Technol 22:797

    Article  CAS  Google Scholar 

  33. Papageorgious GZ, Achilias DN, Karayannidis GP (2005) Therm Acta 427:117

    Article  Google Scholar 

  34. Cebe P, Hong SD (1986) Polymer 27:1183

    Article  CAS  Google Scholar 

  35. Avami M (1941) J Chem Phys 9:177

    Article  Google Scholar 

  36. Hu X, Lesser AJ (2003) J Polym Sci Part B Polym Phys 41:2275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (Grant No. 20734005 and 50973074) and the Program for New Century Excellent Talents in University (NCET-08-0382). We are also heavily indebted to Mr. Zhu Li from Center of Analysis and Test of Sichuan University for careful SEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, K., Wen, R., Wang, Y. et al. Crystallization behavior of poly (vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. J Mater Sci 46, 1542–1550 (2011). https://doi.org/10.1007/s10853-010-4959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4959-5

Keywords

Navigation