Skip to main content

High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix


Tungsten coatings with thickness of 5–500 nm are applied onto plane-faced synthetic diamonds with particle sizes of about 430 and 180 μm. The composition and structure of the coatings are investigated using scanning electron microscopy, X-ray spectral analysis, X-ray diffraction, and atomic force microscopy. The composition of the coatings varies within the range W–W2C–WC. The average roughness, R a, of the coatings’ surfaces (20–100 nm) increases with the weight–average thickness of the coating. Composites with a thermal conductivity (TC) as high as 900 W m−1 K−1 are obtained by spontaneous infiltration, without the aid of pressure, using the coated diamond grains as a filler, and copper or silver as a binder. The optimal coating thickness for producing a composite with maximal TC is 100–250 nm. For this thickness the heat conductance of coatings as a filler/matrix interface is calculated as G = (2–10) × 107 W m−2 K−1. The effects of coating composition, thickness and roughness, as well as of impurities, on wettability during the metal impregnation process and on the TC of the composites are considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Here and below TC is considered at temperature about 300 K.

  2. Numbers written with a slash designate the granulometric composition of the powders; in the first case, in meshes, in the second, in micrometers.

  3. Identification by PDF database: 6-675* diamond, cub. lattice; 4-806* W cub.; 35-776* W2C hex.; 25-1047* WC hex.

  4. Optimal for powder diffractography particle size is several µm.

  5. Thermal resistance is determined as ratio ΔT/q, where ΔT (K) is temperature fall, q (W/m2) is heat flow. Inverse to thermal resistance value G = 1/R is called heat conductance and is measured in W m−2 K−1.


  1. Shinde SL, Goela JS (eds) (2006) High thermal conductivity materials. Springer, New York

    Google Scholar 

  2. Zweben C (1998) J Miner Met Mater Soc 50:47

    CAS  Google Scholar 

  3. Prieto R, Molina JM, Narciso J, Louis E (2008) Scripta Mater 59:11

    Article  CAS  Google Scholar 

  4. Kidalov SV, Shakhov FM (2009) Materials 2(4):2467

    Article  CAS  Google Scholar 

  5. Gordeev SK, Zhukov SG, Danchukova LV, Ekstrom TC (2001) Neorganicheskie Materialy 37:691 [(2001) Low-pressure fabrication of diamond–SiC–Si composites. Inorg Mater 37:579–583]

    Google Scholar 

  6. Park JS, Sinclair R, Rowcliffe D, Stern M, Davidson H (2006) J Mater Sci 41:4611. doi:10.1007/s10853-006-0249-7

    Article  CAS  Google Scholar 

  7. Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Compos Sci Technol 66:2677

    Article  CAS  Google Scholar 

  8. Hanada K, Matsuzaki K, Sano T (2004) J Mater Process Technol 153–154:514

    Article  Google Scholar 

  9. Barcena J, Maudes J, Vellvehi M, Jorda X, Obieta I, Guraya C, Bilbao L, Jimenez C, Merveille C, Coleto J (2008) Acta Astronaut 62:422

    Article  CAS  Google Scholar 

  10. Yoshida K, Morigami H (2004) Microelectron Reliab 44:303

    Article  CAS  Google Scholar 

  11. Yekimov EA, Suetin NV, Popovich AF, Ralchenko VG, Gromnitskaya EL, Modenov VP (2008) Neorganicheskie Materialy 44:275 [(2008) The influence of microstructures and particle dimensions on the thermal conductivity of diamond composites obtained at high pressures. Inorg Mater 44:224–229]

    Google Scholar 

  12. Weber L, Tavangar R (2007) Scripta Mater 57:988

    Article  CAS  Google Scholar 

  13. Weber L, Tavangar R (2009) Adv Mater Res 59:111

    Article  CAS  Google Scholar 

  14. Schubert T, Ciupinski L, Zielinski W, Michalski A, Weibgarber T, Kieback B (2008) Scripta Mater 58:263

    Article  CAS  Google Scholar 

  15. Schubert T, Trindade B, Weibgarber T, Kieback B (2008) Mater Sci Eng A 475:39

    Article  Google Scholar 

  16. Kerns J, Colella N, Makowiecki D, Davidson H (1995) In: International symposium on microelectronics, Los Angeles, October 24–26, 1995.

  17. Kerns J, Colella N, Makowiecki D, Davidson H (1996) Int J Microcircuits Electron Packag 19:206

    CAS  Google Scholar 

  18. Chu K, Liu Z, Jia C, Chen H, Liang X, Gao W, Tian W, Guo H (2010) J Alloys Compd 490:453

    Article  CAS  Google Scholar 

  19. Xia Y, Song Y, Lin C, Cui S, Fang Z (2009) Trans Nonferrous Met Soc China 19:1161

    Article  CAS  Google Scholar 

  20. Novikov NV, Gontar’ AG (1990) In: Kvaskov VB (ed) Almaz v elektronnoi tehnike. Energoatomizdat, Moskow (in Russian) [Application of synthetic diamonds in electronics. In: Diamond in electronic technology]

  21. Abyzov AM, Kidalov SV, Shakhov FM (2008) Materialovedenie 5:24 [(2008) Composite material of diamond-copper with high thermal conductivity. Mater Sci Trans 5:24–27]

    Google Scholar 

  22. Tavangar R, Molina JM, Weber L (2007) Scripta Mater 56:357

    Article  CAS  Google Scholar 

  23. Chuprina VG (1992) Poroshkovaya Metallurgiya 7:34 [(1992) Physicochemical interaction and structure development during the formation of metal gas-transfer coatings on diamond (review). I. Kinetics. Powder Metall Met Ceram 31(7):578–583]

  24. Chuprina VG (1992) Poroshkovaya Metallurgiya 8:57 [(1992) Physicochemical interaction and structure development during the formation of metal gas-transport coatings on diamond (review). II. Mechanism. Powder Metall Met Ceram 31(8):687–692]

  25. Osintsev OE, Fedorov VN (ed) (2004) Med’ i mednye splavy. Mashinostroenie, Moskow (in Russian) [Copper and copper alloys]

  26. International Tables for Crystallography (2006) vol C, chapt 4.2

  27. Kunii D, Levenspiel O (1969) Fluidization engineering. Wiley, New York

    Google Scholar 

  28. Novikov NV (ed) (1987) Fizicheskie svoistva almaza. Naukova dumka, Kiev (in Russian) [Physical properties of diamond]

  29. Naidich YuV (ed) (1991) Poverhnostnye svoistva rasplavov i tverdyh tel I ih ispol’zovanie v materialovedenii. Naukova dumka, Kiev (in Russian) [Surface properties of melts and solids and their application in materials technology]

  30. Naidich YuV, Lavrinenko IA, Evdokimov VA (1974) Poroshkovaya Metallurgiya 1:34 [(1974) Densification in liquid phase sintering under pressure in the system tungsten-copper. Powder Metall Met Ceram 13(1):26–30]

  31. Kosolapova TYa (ed) (1986) Svoistva, poluchenie i primenenie tugoplavkih soedinenii. Metallurgiya, Moskow (in Russian) [Properties, making and application of refractory substances]

  32. Mortimer DA, Nicholas M (1973) J Mater Sci 8:640. doi:10.1007/BF00561219

    Article  CAS  Google Scholar 

  33. Grigor’ev IS, Meilihov EZ (eds) (1991) Fizicheskie velichiny. Energoatomizdat, Moskow (in Russian) [Physical quantities]

  34. Cardarelli F (2008) Materials handbook, chap 3. Springer, London, p 10

    Google Scholar 

  35. Eremenko VN, Minakova RV, Churakov MM (1977) Poroshkovaya Metallurgiya 4:53 [(1977) Solubility of tungsten in copper-nickel melts. Powder Metall Met Ceram 16(4):283–286]

    Google Scholar 

  36. Abrikosov NH (ed) (1979) Dvoinye i mnogokomponentnye sistemy na osnove medi. Nauka, Moskow (in Russian) [Binary and multicomponent systems on the copper basis]

  37. Dorfman S, Fuks D, Suery M (1999) J Mater Sci 34:77. doi:10.1023/A:1004461423717

    Article  CAS  Google Scholar 

  38. Bhushan B (2007) In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Berlin Heidelberg

    Chapter  Google Scholar 

  39. Yang B, Chen G (2004) In: Tritt T (ed) Thermal conductivity: theory, properties and applications. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  40. Feng B, Li Z, Zhang X (2009) Thin Solid Films 517:2803

    Article  CAS  Google Scholar 

  41. Efimov VB, Mezhov-Deglin LP (1999) Physica B 263–264:745

    Article  Google Scholar 

  42. Naidich YuV, Kostyuk BD, Kolesnichenko GA, Shaikevich SS (1973) Poroshkovaya Metallurgiya 12:55 [(1973) Adhesion properties and wetting by molten metals of thin metallic films applied to nonmetallic materials. Powder Metall Met Ceram 12(12):988–993]

    Google Scholar 

  43. Naidich YuV, Volk GP, Lavrinenko IA (1981) Poroshkovaya Metallurgiya 9:22 [(1981) Infiltration of metal-coated diamond powders by molten metal. Powder Metall Met Ceram 20(9):610–612]

    Google Scholar 

  44. Marmur A (2009) Annu Rev Mater Res 39:473

    Article  CAS  Google Scholar 

  45. Nicholas M, Poole DM (1967) J Mater Sci 2:269. doi:10.1007/BF00555384

    Article  CAS  Google Scholar 

  46. Kornilov II, Glazova VV (1967) Vzaimodeistvie tugoplavkih metallov perehodnyh grupp s kislorodom. Nauka, Moskow (in Russian) [Interaction of refractory metals of transition groups with oxygen]

  47. Hasselman DPH, Johnson LF (1987) J Compos Mater 21:508

    Article  Google Scholar 

Download references


Authors express their appreciation to E.A. Sosnov (St.Petersburg State Institute of Technology) for AFM analysis. Partly this study (S.V. Kidalov and F.M. Shakhov) was supported by the Russian Foundation for Basic Research (RFBR) grant 09-08-01200-a.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andrey M. Abyzov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abyzov, A.M., Kidalov, S.V. & Shakhov, F.M. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. J Mater Sci 46, 1424–1438 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Diamond Particle
  • Copper Matrix
  • Synthetic Diamond
  • Metal Composite
  • Tungsten Coating