Skip to main content

The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model

Abstract

Hygroscopic behaviour is an inherent characteristic of natural fibres which can influence their applications as textile fabrics and composite reinforcements. In this study, the water vapour sorption kinetic properties of cotton, filter paper, flax, hemp, jute, and sisal fibres were determined using a dynamic vapour sorption apparatus and the results were analyzed by use of a parallel exponential kinetics (PEK) model. With all of the fibres tested, the magnitude of the sorption hysteresis observed varied, but it was always greatest at the higher end of the hygroscopic range. Flax and sisal fibres displayed the lowest and highest total hysteresis, respectively. The PEK model, which is comprised of fast and slow sorption components, exhibited hysteresis in terms of mass for both processes between the adsorption and desorption isotherm. The hysteresis derived from the slow sorption process was less than from the fast process for all tested fibres. The fast processes for cotton and filter paper dominated the isotherm process; however, the hemp and sisal fibres displayed a dominant slow process in the isotherm run. The characteristic time for the fast sorption process did not vary between adsorption and desorption, except at the top end of the hygroscopic range. The characteristic time for the slow process was invariably larger for the desorption process. The physical interpretation of the PEK model is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Kalia S, Kaith BS, Kaur I (2009) Polym Eng Sci 49:1253

    CAS  Article  Google Scholar 

  2. Bakkevig MK, Nielsen R (1994) Ergonomics 36:787

    Google Scholar 

  3. Li Y (2005) Ergonomics 48:234

    CAS  Article  Google Scholar 

  4. Guo Y, Li Y, Tokura H, Wong T, Chung J, Wong ASW, Gohel MDI, Leung PHM (2008) Text Res J 78:1057

    CAS  Article  Google Scholar 

  5. Hu JY, Li Y, Yeung KW, Wong A, Xu W (2005) Text Res J 75:57

    CAS  Article  Google Scholar 

  6. Wambua P, Ivens J, Verpoest I (2003) Compos Sci Technol 63:1259

    CAS  Article  Google Scholar 

  7. Bledzki AK, Gassan J, Theis S (1998) Mech Compos Mater 34:563

    CAS  Article  Google Scholar 

  8. Cantero G, Arbeliaz A, Liano-Ponte R, Mondargon I (2003) Compos Sci Technol 63:1247

    CAS  Article  Google Scholar 

  9. Lundin T, Falk RH, Felton C (2001) In: Proceedings of the sixth international conference on wood fiber–plastic composites, Madison, Wisconsin

  10. Wallenberger FT, Weston N (2004) Natural fibers, plastics and composites. Kluwer Academic Publishers, Massachusetts, USA

    Google Scholar 

  11. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. Francis, Taylor

    Book  Google Scholar 

  12. Schirp A, Wolcott M (2005) Wood Fiber Sci 37:643

    Google Scholar 

  13. Schirp A, Wolcott M (2006) J Appl Polym Sci 99:3138

    CAS  Article  Google Scholar 

  14. Morris PI, Cooper PA (1997) Forest Prod J 48:86

    Google Scholar 

  15. Lomelí-Ramírez MG, Ochoa-Ruiz HG, Fuentes-Talavera FJ, García-Enriquez S, Cerpa-Gallegos MA, Silva-Guzmán JA (2009) Int Biodeterior Biodegradation 63:1030

    Article  Google Scholar 

  16. Carles JE, Scallan AM (1972) J Appl Polym Sci 17:1855

    Article  Google Scholar 

  17. Hills BP, Wright KM, Belton PS (1989) Mol Phys 67:1309

    CAS  Article  Google Scholar 

  18. Ibbett RN, Schuster KC, Fasching M (2008) Polymer 49:5013

    CAS  Article  Google Scholar 

  19. Hill CAS (2006) Wood modification—chemical, thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  20. Papadopoulos AN, Hill CAS (2003) Wood Sci Technol 37:221

    CAS  Article  Google Scholar 

  21. Hernández RE (2007) Wood Fiber Sci 39:132

    Google Scholar 

  22. Hill CAS, Norton A, Newman G (2009) J Appl Polym Sci 112:1524

    CAS  Article  Google Scholar 

  23. Leisen J, Beckham HW, Benham M (2002) Solid State Nucl Magn Reson 22:409

    CAS  Article  Google Scholar 

  24. Hill CAS, Norton A, Newman G (2010) Wood Sci Technol 44:497

    CAS  Article  Google Scholar 

  25. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Wood Sci Technol. doi:10.1007/s00226-010-0311-0

  26. Kohler R, Dueck R, Ausperger B, Alex R (2003) Compos Interface 10:255

    CAS  Article  Google Scholar 

  27. Hill CAS, Norton A, Newman G (2010) J Appl Polym Sci 116:2166

    CAS  Article  Google Scholar 

  28. Xie Y, Hill CAS, Xiao Z, Zaihan J, Militz H, Mai C (2010) J Appl Polym Sci 117:1674

    CAS  Google Scholar 

  29. Hill CAS, Norton A, Newman G (2010) Holzforschung 64:469

    CAS  Article  Google Scholar 

  30. Okubayashi S, Griesser UJ, Bechtold T (2005) Cellulose 12:403

    CAS  Article  Google Scholar 

  31. Okubayashi S, Griesser UJ, Bechtold T (2005) J Appl Polym Sci 97:1621

    CAS  Article  Google Scholar 

  32. Kachrimanis K, Noisternig MF, Griesser UJ, Malamataris S (2006) Eur J Pharm Biopharm 64:307

    CAS  Article  Google Scholar 

  33. Madamba PS, Driscol RH, Buckle KAJ (1996) Food Eng 29:75

    Article  Google Scholar 

  34. Tang X, De Rooij MR, Van Duynhoven J, Van Breugel KJ (2008) J Microsc 230:100

    CAS  Article  Google Scholar 

  35. Rahman MS, Perera CO, Thebaud C (1998) Food Res Int 30:485

    Article  Google Scholar 

  36. Christensen GN (1965) Humidity Moisture 4:279

    CAS  Google Scholar 

  37. Rollins ML, Tripp VW (1954) Text Res J 24:345

    CAS  Article  Google Scholar 

  38. Krakhmalev VA, Paiziev AA (2006) Cellulose 13:45

    Article  Google Scholar 

  39. Smith CW, Cothren JT (1999) Cotton: origin, history, technology, and protection. Wiley, New York

    Google Scholar 

  40. Gümüşkaya E, Kalyoncu EE, Kirci H (2009) Chem Pap 63:670

    Article  Google Scholar 

  41. Newman RH, Hemmingson JA, Suckling ID (1993) Holzforschung 47:234

    CAS  Article  Google Scholar 

  42. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Cellulose 16:641

    CAS  Article  Google Scholar 

  43. Bertuzzi MA, Armada M, Gottifredi JC (2003) Food Sci Technol Int 9:115

    CAS  Article  Google Scholar 

  44. Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Virginia, USA

    Google Scholar 

  45. Skaar C (1972) Water in wood. Syracuse University Press, Syracuse

    Google Scholar 

  46. Esteban LG, Gril J, de Palacios P, Casasús AG (2005) Ann For Sci 62:275

    Article  Google Scholar 

  47. Shmulsky R, Kadir K, Erickson R (2001) Wood Fiber Sci 33:662

    CAS  Google Scholar 

  48. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) J Food Eng 6:297

    Article  Google Scholar 

  49. Peralta PN (1995) Wood Fiber Sci 27:250

    CAS  Google Scholar 

  50. Peralta PN (1996) Wood Fiber Sci 28:406

    CAS  Google Scholar 

  51. Everett DH, Whitton WI (1952) Trans Faraday Soc 48:749

    CAS  Article  Google Scholar 

  52. Everett DH, Smith FW (1954) Trans Faraday Soc 50:187

    CAS  Article  Google Scholar 

  53. Everett DH (1954) Trans Faraday Soc 50:1077

    CAS  Article  Google Scholar 

  54. Everett DH (1955) Trans Faraday Soc 51:1551

    CAS  Article  Google Scholar 

  55. Lu Y, Pignatello JJ (2004) J Environ Qual 33:1314

    CAS  Article  Google Scholar 

  56. Lu Y, Pignatello JJ (2002) Environ Sci Technol 36:4553

    CAS  Article  Google Scholar 

  57. Lu Y, Pignatello JJ (2004) Environ Sci Technol 38:5853

    CAS  Article  Google Scholar 

  58. Vrentas JS, Vrentas CM (1996) Macromolecules 29:4391

    CAS  Article  Google Scholar 

  59. Okubayashi S, Griesser UJ, Bechtold T (2004) Carbohydr Polym 58:293

    CAS  Article  Google Scholar 

  60. Morton WE, Hearle JWS (1997) Physical properties of textile fibers. The Textile Institute, UK

    Google Scholar 

  61. Krabbenhoft K, Damkilde L (2004) Matériaux at Constructions 37:615

    CAS  Google Scholar 

  62. Mwaikambo LY (2002) Plant-based resources for sustainable composites. PhD thesis, Department of Engineering and Applied Science, University of Bath, UK

  63. Bolton AJ (1994) Mater Technol 9:12

    Google Scholar 

  64. Baillie C (2000) Green composites: polymer composites and the environment. Woodhead Publishing Limited, New York

    Google Scholar 

  65. Van Den Oever MJA, Bos HL, Van Kemenade MJJM (2000) Appl Compos Mater 7:387

    Article  Google Scholar 

  66. Morvan C, Andeme-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Skin DE (2003) Plant Physiol Biochem 41:935

    CAS  Article  Google Scholar 

  67. His I, Morvan C, Andème-Onzighi C, Driouich A (2001) J Histochem Cytochem 49:1525

    CAS  Google Scholar 

  68. Crônier D, Monties B, Chabbert B (2005) J Agric Food Chem 53:8279

    Article  Google Scholar 

  69. Vignon MR, Dupeyre D, Garcia-Jaldon C (1996) Bioresour Technol 58:203

    CAS  Article  Google Scholar 

  70. Mukhopadhyay AK, Bandyopadhyay SK, Mukhopadhyay U (1985) Text Res J 55:733

    CAS  Article  Google Scholar 

  71. Gañan P, Garbizu S, Llano-Ponte R, Mondragon I (2005) Polym Compos 26:121

    Article  Google Scholar 

  72. Martins MA, Kiyohara PK, Joekes I (2004) J Appl Polym Sci 94:2333

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The support of the Scottish Funding Council for the Joint Research Institute on Civil and Environmental Engineering under the auspices of the Edinburgh Research Partnership is acknowledged. Support from the Carnegie Trust and the Royal Society for financial support for visits of Callum Hill to South Africa is gratefully acknowledged. The support from Chinese National Natural Science Funds (Project No. 30771680) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Callum A. S. Hill.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xie, Y., Hill, C.A.S., Jalaludin, Z. et al. The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci 46, 479–489 (2011). https://doi.org/10.1007/s10853-010-4935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4935-0

Keywords

  • Hemp
  • Natural Fibre
  • Equilibrium Moisture Content
  • Jute Fibre
  • Sisal Fibre