Journal of Materials Science

, Volume 46, Issue 2, pp 479–489 | Cite as

The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model

  • Yanjun Xie
  • Callum A. S. Hill
  • Zaihan Jalaludin
  • Simon F. Curling
  • Rajesh D. Anandjiwala
  • Andrew J. Norton
  • Gary Newman


Hygroscopic behaviour is an inherent characteristic of natural fibres which can influence their applications as textile fabrics and composite reinforcements. In this study, the water vapour sorption kinetic properties of cotton, filter paper, flax, hemp, jute, and sisal fibres were determined using a dynamic vapour sorption apparatus and the results were analyzed by use of a parallel exponential kinetics (PEK) model. With all of the fibres tested, the magnitude of the sorption hysteresis observed varied, but it was always greatest at the higher end of the hygroscopic range. Flax and sisal fibres displayed the lowest and highest total hysteresis, respectively. The PEK model, which is comprised of fast and slow sorption components, exhibited hysteresis in terms of mass for both processes between the adsorption and desorption isotherm. The hysteresis derived from the slow sorption process was less than from the fast process for all tested fibres. The fast processes for cotton and filter paper dominated the isotherm process; however, the hemp and sisal fibres displayed a dominant slow process in the isotherm run. The characteristic time for the fast sorption process did not vary between adsorption and desorption, except at the top end of the hygroscopic range. The characteristic time for the slow process was invariably larger for the desorption process. The physical interpretation of the PEK model is discussed.


Hemp Natural Fibre Equilibrium Moisture Content Jute Fibre Sisal Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The support of the Scottish Funding Council for the Joint Research Institute on Civil and Environmental Engineering under the auspices of the Edinburgh Research Partnership is acknowledged. Support from the Carnegie Trust and the Royal Society for financial support for visits of Callum Hill to South Africa is gratefully acknowledged. The support from Chinese National Natural Science Funds (Project No. 30771680) is also appreciated.


  1. 1.
    Kalia S, Kaith BS, Kaur I (2009) Polym Eng Sci 49:1253CrossRefGoogle Scholar
  2. 2.
    Bakkevig MK, Nielsen R (1994) Ergonomics 36:787Google Scholar
  3. 3.
    Li Y (2005) Ergonomics 48:234CrossRefGoogle Scholar
  4. 4.
    Guo Y, Li Y, Tokura H, Wong T, Chung J, Wong ASW, Gohel MDI, Leung PHM (2008) Text Res J 78:1057CrossRefGoogle Scholar
  5. 5.
    Hu JY, Li Y, Yeung KW, Wong A, Xu W (2005) Text Res J 75:57CrossRefGoogle Scholar
  6. 6.
    Wambua P, Ivens J, Verpoest I (2003) Compos Sci Technol 63:1259CrossRefGoogle Scholar
  7. 7.
    Bledzki AK, Gassan J, Theis S (1998) Mech Compos Mater 34:563CrossRefGoogle Scholar
  8. 8.
    Cantero G, Arbeliaz A, Liano-Ponte R, Mondargon I (2003) Compos Sci Technol 63:1247CrossRefGoogle Scholar
  9. 9.
    Lundin T, Falk RH, Felton C (2001) In: Proceedings of the sixth international conference on wood fiber–plastic composites, Madison, WisconsinGoogle Scholar
  10. 10.
    Wallenberger FT, Weston N (2004) Natural fibers, plastics and composites. Kluwer Academic Publishers, Massachusetts, USAGoogle Scholar
  11. 11.
    Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. Francis, TaylorCrossRefGoogle Scholar
  12. 12.
    Schirp A, Wolcott M (2005) Wood Fiber Sci 37:643Google Scholar
  13. 13.
    Schirp A, Wolcott M (2006) J Appl Polym Sci 99:3138CrossRefGoogle Scholar
  14. 14.
    Morris PI, Cooper PA (1997) Forest Prod J 48:86Google Scholar
  15. 15.
    Lomelí-Ramírez MG, Ochoa-Ruiz HG, Fuentes-Talavera FJ, García-Enriquez S, Cerpa-Gallegos MA, Silva-Guzmán JA (2009) Int Biodeterior Biodegradation 63:1030CrossRefGoogle Scholar
  16. 16.
    Carles JE, Scallan AM (1972) J Appl Polym Sci 17:1855CrossRefGoogle Scholar
  17. 17.
    Hills BP, Wright KM, Belton PS (1989) Mol Phys 67:1309CrossRefGoogle Scholar
  18. 18.
    Ibbett RN, Schuster KC, Fasching M (2008) Polymer 49:5013CrossRefGoogle Scholar
  19. 19.
    Hill CAS (2006) Wood modification—chemical, thermal and other processes. Wiley, ChichesterCrossRefGoogle Scholar
  20. 20.
    Papadopoulos AN, Hill CAS (2003) Wood Sci Technol 37:221CrossRefGoogle Scholar
  21. 21.
    Hernández RE (2007) Wood Fiber Sci 39:132Google Scholar
  22. 22.
    Hill CAS, Norton A, Newman G (2009) J Appl Polym Sci 112:1524CrossRefGoogle Scholar
  23. 23.
    Leisen J, Beckham HW, Benham M (2002) Solid State Nucl Magn Reson 22:409CrossRefGoogle Scholar
  24. 24.
    Hill CAS, Norton A, Newman G (2010) Wood Sci Technol 44:497CrossRefGoogle Scholar
  25. 25.
    Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Wood Sci Technol. doi: 10.1007/s00226-010-0311-0
  26. 26.
    Kohler R, Dueck R, Ausperger B, Alex R (2003) Compos Interface 10:255CrossRefGoogle Scholar
  27. 27.
    Hill CAS, Norton A, Newman G (2010) J Appl Polym Sci 116:2166CrossRefGoogle Scholar
  28. 28.
    Xie Y, Hill CAS, Xiao Z, Zaihan J, Militz H, Mai C (2010) J Appl Polym Sci 117:1674Google Scholar
  29. 29.
    Hill CAS, Norton A, Newman G (2010) Holzforschung 64:469CrossRefGoogle Scholar
  30. 30.
    Okubayashi S, Griesser UJ, Bechtold T (2005) Cellulose 12:403CrossRefGoogle Scholar
  31. 31.
    Okubayashi S, Griesser UJ, Bechtold T (2005) J Appl Polym Sci 97:1621CrossRefGoogle Scholar
  32. 32.
    Kachrimanis K, Noisternig MF, Griesser UJ, Malamataris S (2006) Eur J Pharm Biopharm 64:307CrossRefGoogle Scholar
  33. 33.
    Madamba PS, Driscol RH, Buckle KAJ (1996) Food Eng 29:75CrossRefGoogle Scholar
  34. 34.
    Tang X, De Rooij MR, Van Duynhoven J, Van Breugel KJ (2008) J Microsc 230:100CrossRefGoogle Scholar
  35. 35.
    Rahman MS, Perera CO, Thebaud C (1998) Food Res Int 30:485CrossRefGoogle Scholar
  36. 36.
    Christensen GN (1965) Humidity Moisture 4:279Google Scholar
  37. 37.
    Rollins ML, Tripp VW (1954) Text Res J 24:345CrossRefGoogle Scholar
  38. 38.
    Krakhmalev VA, Paiziev AA (2006) Cellulose 13:45CrossRefGoogle Scholar
  39. 39.
    Smith CW, Cothren JT (1999) Cotton: origin, history, technology, and protection. Wiley, New YorkGoogle Scholar
  40. 40.
    Gümüşkaya E, Kalyoncu EE, Kirci H (2009) Chem Pap 63:670CrossRefGoogle Scholar
  41. 41.
    Newman RH, Hemmingson JA, Suckling ID (1993) Holzforschung 47:234CrossRefGoogle Scholar
  42. 42.
    Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Cellulose 16:641CrossRefGoogle Scholar
  43. 43.
    Bertuzzi MA, Armada M, Gottifredi JC (2003) Food Sci Technol Int 9:115CrossRefGoogle Scholar
  44. 44.
    Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Virginia, USAGoogle Scholar
  45. 45.
    Skaar C (1972) Water in wood. Syracuse University Press, SyracuseGoogle Scholar
  46. 46.
    Esteban LG, Gril J, de Palacios P, Casasús AG (2005) Ann For Sci 62:275CrossRefGoogle Scholar
  47. 47.
    Shmulsky R, Kadir K, Erickson R (2001) Wood Fiber Sci 33:662Google Scholar
  48. 48.
    Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) J Food Eng 6:297CrossRefGoogle Scholar
  49. 49.
    Peralta PN (1995) Wood Fiber Sci 27:250Google Scholar
  50. 50.
    Peralta PN (1996) Wood Fiber Sci 28:406Google Scholar
  51. 51.
    Everett DH, Whitton WI (1952) Trans Faraday Soc 48:749CrossRefGoogle Scholar
  52. 52.
    Everett DH, Smith FW (1954) Trans Faraday Soc 50:187CrossRefGoogle Scholar
  53. 53.
    Everett DH (1954) Trans Faraday Soc 50:1077CrossRefGoogle Scholar
  54. 54.
    Everett DH (1955) Trans Faraday Soc 51:1551CrossRefGoogle Scholar
  55. 55.
    Lu Y, Pignatello JJ (2004) J Environ Qual 33:1314CrossRefGoogle Scholar
  56. 56.
    Lu Y, Pignatello JJ (2002) Environ Sci Technol 36:4553CrossRefGoogle Scholar
  57. 57.
    Lu Y, Pignatello JJ (2004) Environ Sci Technol 38:5853CrossRefGoogle Scholar
  58. 58.
    Vrentas JS, Vrentas CM (1996) Macromolecules 29:4391CrossRefGoogle Scholar
  59. 59.
    Okubayashi S, Griesser UJ, Bechtold T (2004) Carbohydr Polym 58:293CrossRefGoogle Scholar
  60. 60.
    Morton WE, Hearle JWS (1997) Physical properties of textile fibers. The Textile Institute, UKGoogle Scholar
  61. 61.
    Krabbenhoft K, Damkilde L (2004) Matériaux at Constructions 37:615Google Scholar
  62. 62.
    Mwaikambo LY (2002) Plant-based resources for sustainable composites. PhD thesis, Department of Engineering and Applied Science, University of Bath, UKGoogle Scholar
  63. 63.
    Bolton AJ (1994) Mater Technol 9:12Google Scholar
  64. 64.
    Baillie C (2000) Green composites: polymer composites and the environment. Woodhead Publishing Limited, New YorkGoogle Scholar
  65. 65.
    Van Den Oever MJA, Bos HL, Van Kemenade MJJM (2000) Appl Compos Mater 7:387CrossRefGoogle Scholar
  66. 66.
    Morvan C, Andeme-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Skin DE (2003) Plant Physiol Biochem 41:935CrossRefGoogle Scholar
  67. 67.
    His I, Morvan C, Andème-Onzighi C, Driouich A (2001) J Histochem Cytochem 49:1525Google Scholar
  68. 68.
    Crônier D, Monties B, Chabbert B (2005) J Agric Food Chem 53:8279CrossRefGoogle Scholar
  69. 69.
    Vignon MR, Dupeyre D, Garcia-Jaldon C (1996) Bioresour Technol 58:203CrossRefGoogle Scholar
  70. 70.
    Mukhopadhyay AK, Bandyopadhyay SK, Mukhopadhyay U (1985) Text Res J 55:733CrossRefGoogle Scholar
  71. 71.
    Gañan P, Garbizu S, Llano-Ponte R, Mondragon I (2005) Polym Compos 26:121CrossRefGoogle Scholar
  72. 72.
    Martins MA, Kiyohara PK, Joekes I (2004) J Appl Polym Sci 94:2333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yanjun Xie
    • 1
  • Callum A. S. Hill
    • 2
    • 3
  • Zaihan Jalaludin
    • 2
  • Simon F. Curling
    • 4
  • Rajesh D. Anandjiwala
    • 5
    • 6
  • Andrew J. Norton
    • 7
  • Gary Newman
    • 8
  1. 1.Key Laboratory of Bio-based Material Science and Technology, Ministry of EducationNortheast Forestry UniversityHarbinPeople’s Republic of China
  2. 2.Forest Products Research Institute, Joint Research Institute for Civil and Environmental EngineeringEdinburgh Napier UniversityEdinburghUK
  3. 3.JCH Industrial Ecology LtdAngleseyUK
  4. 4.The BioComposites CentreBangor UniversityBangorUK
  5. 5.CSIR Materials Science and Manufacturing, Nonwovens and Composites Group, Polymers and Composites Competence AreaPort ElizabethSouth Africa
  6. 6.Faculty of Science, Department of Textile ScienceNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
  7. 7.RenuablesLlanllechidUK
  8. 8.Plant Fibre Technology LtdBangorUK

Personalised recommendations