Skip to main content
Log in

Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1−yO3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Samples of nominal compositions, Cs0.25Nb y W1−y O3 and Cs0.3Nb y W1−y O3 with 0.0 ≤ y ≤ 0.25 and 0.0 ≤ y ≤ 0.3 were synthesized using appropriate amounts of Cs2WO4, WO3 and WO2 in evacuated and closed silica glass tubes at 800 °C. The polycrystalline products contain hexagonal shaped crystals of up to 15 μm diameter as long as y ≤ 0.15. X-ray powder patterns of the samples reveal the formation of hexagonal tungsten bronze (HTB-I) type phase with y < 0.1. A mixture of HTB-I and an analogous less reduced hexagonal tungsten bronze (HTB-II) type phase is seen when y ≥ 0.1. HTB-II content increases with increasing y, revealing close similarity to bronzoid type phases when y = x. Results of SEM/EDX analysis also support a partial substitution of tungsten by niobium in the HTB-I type phase. Infrared absorption and optical reflectivity data shows the effect of increasing amount of non-metallic phase for y > 0.1 and the effect of counterdoping by Nb5+/W5+ substitution in the metallic HTB-I type phase for y ≤ 0.1, respectively. Reinvestigations in the system Rb0.3Nb y W1−y O3 (0.0 ≤ y ≤ 0.175) show similar results with increasing content of HTB-II type phase related with y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dickens PG, Whittingham MS (1968) Quart Rev Chem Soc 22:30

    Article  CAS  Google Scholar 

  2. Hussain A (1978) Chem Commun Univ Stockholm 2:1

    Google Scholar 

  3. Labbe Ph (1992) Key Eng Mater 68:293

    Article  CAS  Google Scholar 

  4. Granqvist CG (2000) Sol Energy Mater Sol Cells 60:201

    Article  CAS  Google Scholar 

  5. Mann M, Shter GE, Reisner GM, Grader GS (2007) J Mater Sci 42:1010. doi:10.1007/s10853-006-1384-x

    Article  CAS  Google Scholar 

  6. Wang Q, Cao F, Chen Q (2006) J Mater Sci 41:285. doi:10.1007/s10853-005-2956-x

    Article  CAS  Google Scholar 

  7. Magnéli A (1953) Acta Chem Scand 7:315

    Article  Google Scholar 

  8. Hussain A (1978) Acta Chem Scand A32:479

    Article  CAS  Google Scholar 

  9. Debnath T, Roy SC, Rüscher CH, Hussain A (2009) J Mater Sci 44:179. doi:10.1007/s10853-008-3101-4

    Article  CAS  Google Scholar 

  10. Yanovskii VK, Voronkova VI, D’yakov VA (1976) Sov Phys Crystallogr 21:559

    Google Scholar 

  11. Sabatier R, Baud G (1972) J Inorg Nucl Chem 34:873

    Article  CAS  Google Scholar 

  12. Minaeva GN, Voronkova VI, Yanovskii VK (1979) Sov Phys Crystallogr 24:276

    CAS  Google Scholar 

  13. Sharma R (1985) Mat Res Bull 20:1373

    Article  CAS  Google Scholar 

  14. Klimova IP, Voronkova VI, Yanovski VK (1995) Inorg Mat 31:245

    CAS  Google Scholar 

  15. Magnéli A (1989) In: 12th European Crystallographic Meeting, Moscow

  16. Cadwell LH, Morris RC, Moulton WG (1981) Phys Rev B 23:2219

    Article  CAS  Google Scholar 

  17. Brusetti R, Bordet P, Marcus J (2003) J Solid State Chem 172:148

    Article  CAS  Google Scholar 

  18. Skokan MR, Moulton WG, Morris RC (1979) Phys Rev B 20:3670

    Article  CAS  Google Scholar 

  19. Stanley RK, Morris RC, Moulton WG (1979) Phys Rev B 20:1903

    Article  CAS  Google Scholar 

  20. Maczka M, Hanuza J, Waskowska A (2003) J Raman Spectrosc 34:432

    Article  CAS  Google Scholar 

  21. Stefanovich SYu, Bazarova ZhG, Batueva IS, Mokhosoev MV (1990) Sov Phys Crystallogr 35:692

    Google Scholar 

  22. Hussain A, Ul-Monir A, Murshed MM, Rüscher CH (2002) Z Anorg Allg Chem 628:416

    Article  CAS  Google Scholar 

  23. Debnath T, Rüscher CH, Gesing ThM, Koepke J, Hussain A (2008) J Solid State Chem 181:783

    Article  CAS  Google Scholar 

  24. Dey KR (2004) In: Ph.D. Thesis, Leibniz University of Hannover, Germany

  25. Dey KR, Gesing ThM, Rüscher CH, Hussain A (2002) Z Kristallogr NCS 217:461

    CAS  Google Scholar 

  26. Gesing ThM, Rüscher CH, Hussain A (2001) Z Kristallogr NCS 216:37

    CAS  Google Scholar 

  27. Maczka M, Hanuza J, Majchrowski A (2001) J Raman Spectrosc 32:929

    Article  CAS  Google Scholar 

  28. Hussain A, Gruehn R, Rüscher CH (1997) J Alloys Compd 246:51

    Article  CAS  Google Scholar 

  29. Debnath T (2008) In: Ph.D. Thesis, Leibniz University of Hannover, Germany

  30. Debnath T, Rüscher CH, Robben L (2009) Z Kristallogr Suppl 29:131

    Google Scholar 

Download references

Acknowledgements

This study is supported by DFG (RU 764/4-1) and KRD is thankful to DFG for financial support of her renewed stay at Leibniz University Hannover (LUH). AH thanks Alexander von Humboldt Stiftung for financial support through a collaborative research program (V-FOKOOP/DEU/1062067/Hussain). TD and KRD are grateful to “Land Niedersachsen, Germany” for funding Ph.D. research work within “Lichtenberg Stipendium”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Debnath.

Additional information

Dedicated to Professor Lars Kihlborg on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, K.R., Debnath, T., Rüscher, C.H. et al. Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1−yO3 . J Mater Sci 46, 1388–1395 (2011). https://doi.org/10.1007/s10853-010-4932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4932-3

Keywords

Navigation