Skip to main content
Log in

Compositional dependence of the structural and dielectric properties of Li2O–GeO2–ZnO–Bi2O3–Fe2O3 glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(10Li2O–20GeO2–30ZnO–(40-x)Bi2O3xFe2O3 where x = 0.0, 3, 6, and 9 mol%) glasses were prepared. A number of studies, viz. density, differential thermal analysis, FT-IR spectra, DC and AC conductivities, and dielectric properties (constant ε′, loss tan δ, AC conductivity, σ ac, over a wide range of frequency and temperature) of these glasses were carried out as a function of iron ion concentration. The analysis of the results indicate that, the density and molar volume decrease with an increasing of iron content indicates structural changes of the glass matrix. The glass transition temperature T g and onset of crystallization temperature T x increase with the variation of concentration of Fe2O3 referred to the growth in the network connectivity in this concentration range, while glass-forming ability parameter ΔT decrease with increase Fe2O3 content, indicates an increasing concentration of iron ions that take part in the network-modifying positions. The FT-IR spectra evidenced that the main structural units are BiO3, BiO6, ZnO4, GeO4, and GeO6. The structural changes observed by varying the Fe2O3 content in these glasses and evidenced by FTIR investigation suggest that the iron ions play a network modifier role in these glasses while Bi2O3, GeO2, and ZnO play the role of network formers. The temperature dependence of DC and AC conductivities at different frequencies was analyzed using Mott’s small polaron hopping model and, the high temperature activation energies have been estimated and discussed. The dielectric constant and dielectric loss increased with increase in temperature and Fe2O3 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bale S, Srinivasa Rao N, Rahman S (2008) Solid State Sci 10:326

    Article  CAS  Google Scholar 

  2. Bale S, Purnima M, Srinivasu CH, Rahman S (2008) J Alloys Compd 457:545

    Article  CAS  Google Scholar 

  3. Bishay A, Maghrabi C (1969) Phys Chem Glasses 10(1):1

    CAS  Google Scholar 

  4. Dumbaugh WH (1986) Phys Chem Glasses 27:119

    CAS  Google Scholar 

  5. Ingram MD (1987) Phys Chem Glasses 28(6):215

    CAS  Google Scholar 

  6. Tuller HL, Button DP, Uhlmann DR (1980) J Non-Cryst Solids 40:93

    Article  CAS  Google Scholar 

  7. Martin SW (1991) J Am Ceram Soc 74:1767

    Article  CAS  Google Scholar 

  8. Elliot SR (1984) Physics of amorphous materials. Longman, New York

    Google Scholar 

  9. Martin SW, Angell CA (1986) J Non-Cryst Solids 83:185

    Article  CAS  Google Scholar 

  10. Fujihara S, Sasaki C, Kimura T (2000) Key Eng Mater 181:109

    Article  Google Scholar 

  11. Barbieri L, Corradi AB, Leonelli C, Siligardi C, Manfredini T, Pellacani GC (1997) Mater Res Bull 32(6):637

    Article  CAS  Google Scholar 

  12. Pan A, Gosh A (2000) J Non-Cryst Solids 271:157

    Article  CAS  Google Scholar 

  13. Villegas MA, Fernandez Navarro JM (2007) J Eur Ceramic Soc 27:2715

    Google Scholar 

  14. Tarte P (1962) Spectrochim Acta 18:467

    Article  CAS  Google Scholar 

  15. Tarte P (1964) In: Prins IA (ed) Physics of non-crystalline solids. Elsevier, Amsterdam, p 549

    Google Scholar 

  16. Condrate RA (1972) In: Pye LD (ed) Introduction to glass science. Plenum Press, New York, p 101

    Google Scholar 

  17. Condrate RA (1986) J Non-Cryst Solids 84:26

    Article  CAS  Google Scholar 

  18. Iordanova R, Dimitriev Y, Dimitrov V, Kassabov S, Klissurski D (1998) J Non-Cryst Solids 231:227

    Article  CAS  Google Scholar 

  19. Iordanova R, Dimitriev Y, Kassabov S, Klissurski D (1996) J Non-Cryst Solids 204:141

    Article  CAS  Google Scholar 

  20. Dimitrov V, Dimitriev Y, Montenero A (1994) J Non-Cryst Solids 180:51

    Article  CAS  Google Scholar 

  21. Hutchinson JA, Allik TH (1992) Appl Phys Lett 60(12):1424

    Article  CAS  Google Scholar 

  22. Salem SM, Shaltout I (2010) J Mater Sci 45:1837. doi:10.1007/s10853-009-4167-3

    Article  CAS  Google Scholar 

  23. Petru P, Lidia P, Rada S, Bosca M, Culea E (2008) J Vib Spectrosc 48:281

    Article  Google Scholar 

  24. Motke SG, Yawale SP, Yawale SS (2002) Bull Mater Sci 25(1):75

    Article  CAS  Google Scholar 

  25. Bale S, Rahman S (2008) J Opt Mater 31:333

    Article  CAS  Google Scholar 

  26. Baia L, Iliescu T, Simon S, Kiefer W (2001) J Mol Struct 259:9

    Article  Google Scholar 

  27. Rusu D, Ardelean I (2008) J Mater Res Bull 43:1724

    Article  CAS  Google Scholar 

  28. Pernice P, Aronne A, Catauro M, Marotta A (1997) J Non-Cryst Solids 210:23

    Article  CAS  Google Scholar 

  29. Blaszczak K, Adamczyk A (2001) J Mol Struct 596:61

    Article  CAS  Google Scholar 

  30. Marasinghe GK, Karabulut M, Ray CS, Day DE, Booth CH, Allen PG, Shuh DK (1998) Ceram Trans 87:261

    CAS  Google Scholar 

  31. Baiocchi E, Montenero A, Bettinelli M (1981) J Non-Cryst Solids 46:203

    Article  CAS  Google Scholar 

  32. Nery SMD, Pontuschka WM, Isotani S, Rouse CG (1994) Phys Rev 49:3760

    Article  Google Scholar 

  33. Austin IG, Mott NF (1969) Adv Phys 18:41

    Article  CAS  Google Scholar 

  34. Qiu HH, Mori H, Sakata H, Hirayama T (1995) J Ceram Soc Jpn 103:32

    CAS  Google Scholar 

  35. Friedman L, Holstein T (1963) Ann Phys (NY) 21:494

    Article  CAS  Google Scholar 

  36. Dhawan VK, Mansingh A, Sayer M (1982) J Non-Cryst Solids 51:87

    Article  CAS  Google Scholar 

  37. Salem SM (2009) J Mater Sci 44:5760. doi:10.1007/s10853-009-3807-y

    Article  CAS  Google Scholar 

  38. Nkum RK, Punnet A, Datars WR (1992) Physica C 202:371

    Article  CAS  Google Scholar 

  39. Bogomolov VN, Kudinev EK, Firsov YuA (1968) Sov Phys Solid State 9:2502 Fiz Tverd Tela 9 (1967) 3175

    Google Scholar 

  40. Mott NF (1968) J Non-Cryst Solids 1:1

    Article  CAS  Google Scholar 

  41. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  42. Murali Krishna G, Srinivasa Reddy M, Veeraiah N (2007) J Solid State Chem 180:2747

    Article  CAS  Google Scholar 

  43. Srinivasa Rao L, Srinivasa Reddy M, Krishna Rao D, Veeraiah N. J Solid State Sci. doi:10.1016/j.solidstatesciences.2008.06.022

  44. Venkateswara Rao P, Satyanarayana T, Srinivasa Reddy M, Gandhi Y, Veeraiah N (2008) Physica B 403:3751

  45. Ghosh A (1993) Phys Rev B 47:23

    Google Scholar 

  46. Prashant Kumar M, Sankarappa T, Kumar S (2008) J Alloys Compd 464:393

    Article  Google Scholar 

  47. Shaaban MH, Ali AA, El-Nimr LK (2006) Mater Chem Phys 96:423

    Google Scholar 

  48. Sankarappa T, Prashant Kumar M, Devidas GB, Nagaraja N, Ramakrishnareddy R (2008) J Mol Struct 889:308

    Article  CAS  Google Scholar 

  49. Mogus-Milankovic A, Licina V, Reis ST, Day DE (2007) J Non-Cryst Solids 353:2659

    Article  CAS  Google Scholar 

  50. Raistrick LD, Macdonald JR, Franceschetti DR (1987) In: Macdonald JR (ed) Impedance spectroscopy. Wiley, New York (Chap. 2)

    Google Scholar 

  51. Cutroni M, Mandanici A, Piccolo A, Fanggao C, Saunders GA, Mustarelli P (1996) Soild State Ionics 90:167

    Article  CAS  Google Scholar 

  52. Owen A (1963) Prog Ceram Soc 77:256

    Google Scholar 

  53. Elliott SR (1987) Adv Phys 36:135

    Article  CAS  Google Scholar 

  54. Jain H, Mundy JN (1987) J Non-Cryst Solids 91:315

    Article  CAS  Google Scholar 

  55. Elliott SR (1990) Physics of amorphous materials, 2nd edn. Longman, London

    Google Scholar 

  56. Shimakawa K (1982) Philos Mag B 46:123 (see also p 48, 77)

  57. Mogus-Milankovic A, Santic A, Licina V, Day DE (2005) J Non-Cryst Solids 351:3235

    Article  CAS  Google Scholar 

  58. Nageswara Rao P, Raghavaiah BV, Krishna Rao D, Veeraiah N (2005) J Mater Chem Phys 91:381

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaaban M. Salem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salem, S.M., Antar, E.M., Mostafa, A.G. et al. Compositional dependence of the structural and dielectric properties of Li2O–GeO2–ZnO–Bi2O3–Fe2O3 glasses. J Mater Sci 46, 1295–1304 (2011). https://doi.org/10.1007/s10853-010-4915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4915-4

Keywords

Navigation