Skip to main content
Log in

Achieving superplastic properties in a Pb–Sn eutectic alloy processed by equal-channel angular pressing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experiments were conducted on a Pb-62% Sn eutectic alloy containing 160 ppm of Sb. The alloy was processed by equal-channel angular pressing (ECAP) through 1 to 5 passes at room temperature and then tested in tension at a temperature of 423 K using initial strain rates from 1.0 × 10−4 to 1.0 × 10−1 s−1. Excellent superplastic elongations were achieved at intermediate strain rates with a maximum elongation to failure of 2,665%. It is shown that, for processing through similar numbers of ECAP passes, these elongations are higher than in an earlier investigation using a Pb-62% Sn alloy of higher purity. The results are presented pictorially in the form of a deformation mechanism map by plotting normalized grain size against normalized stress at a temperature of 423 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Langdon TG (2009) J Mater Sci 44:5998. doi:10.1007/s10853-009-3780-5

    Article  CAS  Google Scholar 

  2. Langdon TG (1982) Metall Trans 13A:689

    Google Scholar 

  3. Ahmed MMI, Langdon TG (1977) Metall Trans 8A:1832

    CAS  Google Scholar 

  4. Ma Y, Langdon TG (1994) Metall Mater Trans 25A:2309

    Article  CAS  Google Scholar 

  5. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  6. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  7. Langdon TG (1994) Acta Metall Mater 42:2437

    Article  CAS  Google Scholar 

  8. Ma Y, Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Mater Trans JIM 37:336

    CAS  Google Scholar 

  9. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scripta Mater 37:1845

    Google Scholar 

  10. Higashi K, Mabuchi M, Langdon TG (1996) ISIJ Int 36:1423

    Article  CAS  Google Scholar 

  11. Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi:10.1007/s10853-006-0954-2

    Article  CAS  Google Scholar 

  12. Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A241:122

    CAS  Google Scholar 

  13. Kawasaki M, Langdon TG (2008) J Mater Sci 43:7360. doi:10.1007/s10853-008-2771-2

    Article  CAS  Google Scholar 

  14. Kawasaki M, Langdon TG (2008) Mater Trans 49:84

    Article  CAS  Google Scholar 

  15. Lee SM, Langdon TG (2001) Mater Sci Forum 357–349:321

    Article  Google Scholar 

  16. Kawasaki M, Lee S, Langdon TG (2009) Scripta Mater 61:293

    Article  Google Scholar 

  17. Rao VS, Kashyap BP, Prabhu N, Hodgson PD (2008) Mater Sci Eng A486:341

    CAS  Google Scholar 

  18. Ahmed MMI, Langdon TG (1983) J Mater Sci Lett 2:59

    Article  Google Scholar 

  19. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143

    Article  CAS  Google Scholar 

  20. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328

    CAS  Google Scholar 

  21. Mendes AA de A, Sordi VL, Rubert JB, Ferrante M (2008) Mater Sci Forum 584–586:145

  22. Ishikawa H, Mohamed FA, Langdon TG (1975) Philos Mag 32:1269

    Article  CAS  Google Scholar 

  23. Mohamed FA, Langdon TG (1975) Philos Mag 32:697

    Article  CAS  Google Scholar 

  24. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143

    CAS  Google Scholar 

  25. Langdon TG (1994) Mater Sci Eng A174:225

    CAS  Google Scholar 

  26. Langdon TG (1991) Mater Sci Eng A137:1

    CAS  Google Scholar 

  27. Langdon TG (1982) Metal Sci 16:175

    Google Scholar 

  28. Ahmed MMI, Mohamed FA, Langdon TG (1979) J Mater Sci 14:2913. doi:10.1007/BF00611474

    Article  CAS  Google Scholar 

  29. Mohamed FA, Langdon TG (1981) Acta Metall 29:911

    Article  CAS  Google Scholar 

  30. Mohamed FA (1983) J Mater Sci 18:582. doi:10.1007/BF00560647

    Article  Google Scholar 

  31. Mohamed FA (1988) J Mater Sci Lett 7:215

    Article  CAS  Google Scholar 

  32. Chaudhury PK, Mohamed FA (1988) Acta Metall 36:1099

    Article  CAS  Google Scholar 

  33. Chaudhury PK, Sivaramakrishnan V, Mohamed FA (1988) Metall Trans 19A:2741

    CAS  Google Scholar 

  34. Ashby MF (1972) Acta Metall 29:887

    Google Scholar 

  35. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford, UK

    Google Scholar 

  36. Shi XQ, Wang ZP, Yang QJ, Pang HLJ (2003) J Eng Mater Tech 125:81

    Article  CAS  Google Scholar 

  37. Mohamed FA, Langdon TG (1974) Metall Trans 5:2339

    Article  CAS  Google Scholar 

  38. Mohamed FA, Langdon TG (1976) Scripta Metall 10:759

    Article  CAS  Google Scholar 

  39. Nabarro FRN (1948) Report of a conference on strength of solids. The Physical Society, London, UK, p 75

    Google Scholar 

  40. Herring C (1950) J Appl Phys 21:437

    Article  Google Scholar 

  41. Coble RL (1963) J Appl Phys 34:1679

    Article  Google Scholar 

  42. Bird JE, Mukherjee AK, Dorn JE (1969) In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel Universities Press, Jerusalem, Israel, p. 255

  43. Cannon WR, Langdon TG (1988) J Mater Sci 23:1. doi:10.1007/BF01174028

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported in part by the National Science Foundation of the United States under Grant No. DMR-0855009 (MK and TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, M., de A. Mendes, A., Sordi, V.L. et al. Achieving superplastic properties in a Pb–Sn eutectic alloy processed by equal-channel angular pressing. J Mater Sci 46, 155–160 (2011). https://doi.org/10.1007/s10853-010-4889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4889-2

Keywords

Navigation