Skip to main content
Log in

Probing of wood–cement interactions during hydration of wood–cement composites by proton low-field NMR relaxometry

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Proton NMR T 2 relaxometry has been applied to investigate phenomena involved in wood–cement composites during hydration. The transformation of capillary pore water into hydrates and gel pore water, as well as the microstructural changes occurring in the cement matrix, was continuously monitored during the first 28 days of hydration. Water in wood and its transfer into the matrix as cement hardens were also evidenced with the method. It has been found, for example, that some of the water in the mixture is retained in wood in the form of bound or free water, depending on the initial water content. By measuring the area under the different peaks, the consumption of water during hydration can be measured and the advancement of the hydration process can be evaluated via the hydration advancement coefficient α. The cement hardening within the composite has been also studied in the presence of calcium chloride, an accelerating agent. The acceleration was clearly evidenced at the early stage of the hydration process. The influence of extractives has been evaluated by comparing the hydration behaviour of composites prepared from Eucalyptus saligna (low extractives content) and Afzelia bipendensis (high extractives content), and a new compatibility index based on NMR relaxometry measurements has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moslemi AA (1997) Inorganic-bonded wood and fiber composite materials. Forest Prod Soc, Madison

    Google Scholar 

  2. Sobral HS (1990) Proceedings of the second international Rilem symposium, held in Salvador, Bahia, Brazil, September 17–21, 1990. Chapman & Hall, London

  3. Durisol-Material properties. http://www.durisolbuild.com/webdocs/durisol%20material%20properties.pdf. Accessed 3 April 2010

  4. Avis technique 16/05-487 Agreslith-C/Société Agresta. http://tbd-atec.cstb.fr/fichiers/pdf/GS16-Q/AQ05487.pdf. Accessed 3 April 2010

  5. Avis technique 2/09-1337 Duripanel/Eternit. http://tbd-atec.cstb.fr/fichiers/pdf/GS02-C/AC091337.pdf. Accessed 3 April 2010

  6. Moslemi AA (1999) Adv Perform Mater 6:161

    Article  Google Scholar 

  7. Ramirez-Coretii A, Eckelman CA, Wolfe RW (1998) Forest Prod J 48:62

    Google Scholar 

  8. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London

    Book  Google Scholar 

  9. Older I (1998) Lea’s chemistry of cement and concrete, 4th edn. Elsevier

  10. Moir G (2003) In: Newman J (ed) Cement in advanced concrete technology constituents materials. Elsevier

  11. Sandermann W, Preusser HJ, Schwiens W (1960) Holzforchung 14:70

    Article  CAS  Google Scholar 

  12. Miller DP, Moslemi AA (1991) Wood Fiber Sci 23:472

    CAS  Google Scholar 

  13. Semple KE, Cinningham RB, Evans PD (2004) Wood Fiber Sci 36:250

    CAS  Google Scholar 

  14. Mougel E, Beraldo AL, Zoulalian A (1995) Holzforschung 49:471

    Article  CAS  Google Scholar 

  15. Fan MZ, Bonfield PW, Dinwoodie JM, Breese MC (1999) Cement Concrete Res 29:923

    Article  CAS  Google Scholar 

  16. Ledhem A, Dheilly RM, Benmalek ML, Queneudec M (2000) Can J Civil Eng 27:101

    Article  Google Scholar 

  17. Rudkiewicz F (2001) Procédé de traitement d’un granulat de bois ou autre matériau organique fibreux entrant dans la fabrication d’un composite à base de ciment. Patent WO/2001/0607759

  18. Tolêdo Filho RD, Scrivener K, England GL, Ghavami K (2000) Cem Concr Compos 22:127

    Article  Google Scholar 

  19. Mohr BJ, Biernacki JJ, Kurtis KE (2006) Cem Concr Res 36:240

    Article  Google Scholar 

  20. Jorge FCP C, Ferreira JMF (2004) Holz und Roh-Werkstoff 62:370

    Article  Google Scholar 

  21. Frybort S, Mauritz R, Teischinger A, Müller U (2008) BioResources 3(2):602

    Google Scholar 

  22. Sandermann W, Kohler R (1964) Holzforschung 18:53

    Article  CAS  Google Scholar 

  23. Hachmi M, Moslemi AA, Campbell AG (1990) Wood Sci Technol 24:345

    Article  CAS  Google Scholar 

  24. Sauvat N, Sell R, Mougel E, Zoulalian A (1999) Holzforschung 53:104

    Article  CAS  Google Scholar 

  25. Karade SR, Irle M, Maher K (2003) Holzforschung 57:672

    Article  CAS  Google Scholar 

  26. Olorunnisola AO (2007) Cem Concr Compos 30:37

    Article  Google Scholar 

  27. Lee AWC, Hong Z (1986) For Prod J 36:87

    CAS  Google Scholar 

  28. Blankenhorn PR, Labosky P Jr, DiCola M, Stover LR (1994) For Prod J 44:59

    CAS  Google Scholar 

  29. Govin A, Peschard A, Fredom E, Guyonnet R (2005) Holzforchung 59:330

    Article  CAS  Google Scholar 

  30. Vaickelionis G, Vaickelioniene R (2006) Ceramics-Silikáty 50:115

    CAS  Google Scholar 

  31. Govin A, Peschard A, Guyonnet R (2006) Cem Concr Compos 28:12

    Article  CAS  Google Scholar 

  32. Fujii T, Miyatake A (2003) Bull Forestry Forest Prod Res Inst 2:93

    CAS  Google Scholar 

  33. Wei YM, Fujii T, Hiramatsu Y, Miyatake A, Yoshinaga S, Fujii T, Tomita B (2004) J Wood Sci 50:327

    Article  CAS  Google Scholar 

  34. Bouguerra A, Ledhem A, de Barquin F, Dheilly RM, Queneudec M (1998) Cem Concr Res 28:1179

    Article  CAS  Google Scholar 

  35. Rodrigues CDS, Ghavami K, Stroeven P (2006) J Mater Sci 41:6925. doi:10.1007/s10853-006-0217-2

    Article  Google Scholar 

  36. Halperin WP, Jehng JY, Song YQ (1994) Magn Reson Imaging 12:169

    Article  CAS  Google Scholar 

  37. Bohris AJ, Goerke U, McDonald PJ, Mulheron M, Newling B, Le Page B (1998) Magn Reson Imaging 16:455

    Article  CAS  Google Scholar 

  38. Holly R, Reardon EJ, Hansson CM, Peemoeller H (2007) J Am Ceram Soc 90:570

    Article  CAS  Google Scholar 

  39. Faure PF, Rodts S (2008) Magn Reson Imaging 26:1183

    Article  CAS  Google Scholar 

  40. Nestlé N (2004) Cem Concr Res 34:447

    Article  Google Scholar 

  41. Gorce J-P, Milestone NB (2007) Cem Concr Res 37:310

    Article  CAS  Google Scholar 

  42. Friedemann K, Schönfelder W, Stallmach F, Kärger J (2008) Mater Struct 41:1647

    Article  CAS  Google Scholar 

  43. Menon RS, MacKay AL, Hailey JRT, Bloom M, Burgess AE, Swanson JS (1987) J Appl Polym Sci 33:1141

    Article  CAS  Google Scholar 

  44. Araujo CD, MacKay AL, Hailey JRT, Whittall KP, Le H (1992) Wood Sci Technol 26:101

    Article  CAS  Google Scholar 

  45. Xu Y, Araujo CD, MacKay AL, Whittall KP (1996) J Magn Reson B 110:55664

    Article  Google Scholar 

  46. Hartley ID, Avramidis S, MacKay AL (1996) Wood Sci Technol 30:141

    Article  CAS  Google Scholar 

  47. Haranczyk H, Weglarz WP, Sojka Z (1999) Holzforschung 53:299

    Article  CAS  Google Scholar 

  48. Labbé N, De Jeso B, Lartigue JC, Daudé G, Pétraud M (2002) Holzforschung 56:25

    Article  Google Scholar 

  49. Thomas JJ, Jennings HM, Allen AJ (1999) Concr Sci Eng 1:45

    Google Scholar 

  50. Bhattacharja S, Moukwa M, D’orazio F, Jehng J-Y, Halperin WP (1993) Adv Cement Based Mater 1:67

    Article  CAS  Google Scholar 

  51. Philippot S, Korb JP, Petit D, Zanni H (1998) Magn Reson Imaging 16:515

    Article  CAS  Google Scholar 

  52. Borgia GC, Bortolotti V, Brown RJS, Castaldi P, Fantazzini P, Soverini U (1994) Magn Reson Imaging 12:209

    Article  CAS  Google Scholar 

  53. Labbé N (2002) Mise au point d’une méthode de dosage de l’eau dans le bois et caractérisation des composés organiques du pin maritime par résonance magnétique nucléaire domaine temps. Thèse de Doctorat, Université Bordeaux 1

  54. Jolicoeur C, Simard M (1998) Cem Concr Res 20:87

    Article  CAS  Google Scholar 

  55. Xu Q, Stark J (2005) Adv Cem Res 17:1

    Article  CAS  Google Scholar 

  56. Neville AM (1981) Properties of concrete, 3rd edn. ELBS/Longman, London

    Google Scholar 

  57. Aligizaki KK (2006) Pore structure of cement-based materials: testing interpretation and requirements. Taylor & Francis, London

    Google Scholar 

  58. Topgaard D, Söderman O (2002) Cellulose 9:139

    Article  CAS  Google Scholar 

  59. Persson PV, Hafrén J, Fogden A, Daniel G, Iversen T (2005) Biomacromolecules 5(3):1097

    Article  Google Scholar 

  60. Ma LF, Yamauchi H, Pulido OR, Tamura Y, Sasaki H, Kawai S (2002) In: Evans PD (ed) Wood-cement composites in the Asia-Pacific region, Proceedings of a workshop held in Canberra, Australia, ACIAR Proceedings No. 107, pp 13–23

Download references

Acknowledgements

This study is part of Arnaud Cheumani’s Ph.D. thesis. We wish to thank the AUF ‘Agence Universitaire de la Francophonie’, and US2B-University Bordeaux 1 for their financial support. We are grateful to Calcia cements for gracefully providing Portland cement samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sèbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheumani, Y.A.M., Ndikontar, M., De Jéso, B. et al. Probing of wood–cement interactions during hydration of wood–cement composites by proton low-field NMR relaxometry. J Mater Sci 46, 1167–1175 (2011). https://doi.org/10.1007/s10853-010-4888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4888-3

Keywords

Navigation