Skip to main content
Log in

Fabrication of an aluminum–carbon nanotube metal matrix composite by accumulative roll-bonding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Accumulative roll-bonding was adapted to fabricate a carbon nanotube (CNT)-reinforced aluminum matrix composite. Its microstructure was investigated by transmission electron microscopy, and it was confirmed that the nanotubes were embedded into the metal matrix while maintaining their multiwalled structure. Measurements revealed that the as-received CNTs had a bimodal diameter size distribution, while only nanotubes with diameters >30 nm and >30 walls were retained during four consecutive rolling operations at 50% reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  2. Vaidyanath LR, Nicholas MG, Milner DR (1959) Br Weld J 6:13

    Google Scholar 

  3. Tsuji N, Saito Y, Lee SH, Minamino Y (2003) Adv Eng Mater 5:338

    Article  CAS  Google Scholar 

  4. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scripta Mater 39:1221

    Article  CAS  Google Scholar 

  5. Tsuji N, Saito Y, Utsunomiya H, Tanigawa S (1999) Scripta Mater 40:795

    Article  CAS  Google Scholar 

  6. Hsieh PJ, Lo YC, Huang JC, Ju SP (2006) Intermetallics 14:924

    Article  CAS  Google Scholar 

  7. Min GH, Lee JM, Kang SB, Kim HW (2006) Mater Lett 60:3255

    Article  CAS  Google Scholar 

  8. Dinda GP, Rosner H, Wilde G (2005) Scripta Mater 52:577

    Article  CAS  Google Scholar 

  9. Mizuuchi K, Inoue K, Yamauchi K, Enami K, Itami M, Okanda Y (2001) Mater Sci Eng A Struct 316:93

    Article  Google Scholar 

  10. Lu C, Tieu K, Wexler D (2009) J Mater Process Technol 209:4830

    Article  CAS  Google Scholar 

  11. Li YH, Housten W, Zhao YM et al (2007) Nanotechnology 18(20), Article No. 205607

  12. Lahiri D, Bakshi SR, Keshri AK, Liu Y, Agarwal A (2009) Mater Sci Eng A Struct 523:263

    Article  Google Scholar 

  13. Iijima S, Brabec C, Maiti A, Bernholc J (1996) J Chem Phys 104:2089

    Article  CAS  Google Scholar 

  14. Falvo MR, Clary GJ, Taylor RM et al (1997) Nature 389:582

    Article  CAS  Google Scholar 

  15. Kwon H, Park DH, Silvain JF, Kawasaki A (2010) Compos Sci Technol 70:546

    Article  CAS  Google Scholar 

  16. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  17. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678

    Article  CAS  Google Scholar 

  18. Ruoff RS, Lorents DC (1995) Carbon 33:925

    Article  CAS  Google Scholar 

  19. Takesue I, Haruyama J, Kobayashi N et al (2006) Phys Rev Lett 96(5), Article No. 057001

  20. Quang P, Jeong YG, Yoon SC, Hong SH, Kim HS (2007) J Mater Process Technol 187:318

    Article  Google Scholar 

  21. Salas W, Alba-Baena NG, Murr LE (2007) Metall Mater Trans A 38A:2928

    Article  CAS  Google Scholar 

  22. Morsi K, Esawi A (2007) J Mater Sci 42:4954. doi:10.1007/s10853-006-0699-y

    Article  CAS  Google Scholar 

  23. Kuzumaki T, Miyazawa K, Ichinose H, Ito K (1998) J Mater Res 13:2445

    Article  CAS  Google Scholar 

  24. Zhong R, Cong HT, Hou PX (2003) Carbon 41:848

    Article  CAS  Google Scholar 

  25. Noguchi T, Magario A, Fukazawa S, Shimizu S, Beppu J, Seki M (2004) Mater Trans 45:602

    Article  CAS  Google Scholar 

  26. Esawi AMK, El Borady MA (2008) Compos Sci Technol 68:486

    Article  CAS  Google Scholar 

  27. Ci LJ, Ryu ZY, Jin-Phillipp NY, Ruhle M (2006) Acta Mater 54:5367

    Article  CAS  Google Scholar 

  28. Pirgazi H, Akbarzadeh A, Petrov R, Sidor J, Kestens L (2008) Mater Sci Eng A Struct 492:110

    Article  Google Scholar 

  29. Valiev RZ, Chmelik F, Bordeaux F, Kapelski G, Baudelet B (1992) Scripta Metall Mater 27:855

    Article  CAS  Google Scholar 

  30. Kamikawa N, Tsuji N, Huang XX, Hansen N (2006) Acta Mater 54:3055

    Article  CAS  Google Scholar 

  31. Tsuji N, Saito Y, Ito Y et al (2000) In: Symposium on ultrafine grained materials at the 2000TMS annual meeting, Mar 12–16, 2000, Nashville, TN, Ultrafine Grained Materials, pp 207–218

  32. Ito Y, Tsuji N, Saito Y, Utsunomiya H, Sakai T (2000) J Jpn Inst Met 64:429

    CAS  Google Scholar 

  33. Lee SH, Saito Y, Tsuji N, Utsunomiya H, Sakai T (2002) Scripta Mater 46:281

    Article  CAS  Google Scholar 

  34. Kamikawa N, Sakai T, Tsuji N (2007) Acta Mater 55:5873

    Article  CAS  Google Scholar 

  35. Tsuji N, Ueji R, Ito Y, Saito Y (2000) In: Proceedings of the 21st RISØ international symposium on material science, p 607

  36. Ashby MF (1970) Philos Mag 21:399

    Article  CAS  Google Scholar 

  37. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  38. Keller TM, Laskoski M, Osofsky M, Qadri SB (2008) Phys Status Solidi A Appl Mater Sci 205:1585

    Article  CAS  Google Scholar 

  39. Willems I, Konya Z, Colomer JF et al (2000) Chem Phys Lett 317:71

    Article  CAS  Google Scholar 

  40. Hertel T, Walkup RE, Avouris P (1998) Phys Rev B 58:13870

    Article  CAS  Google Scholar 

  41. Wang CY, Mioduchowski A (2007) J Appl Phys 101(1), Article No. 014306

  42. Shen HS, Zhang CL (2007) Int J Solids Struct 44:1461

    Article  Google Scholar 

  43. Deck CP, Flowers J, McKee GSB et al (2007) J Appl Phys 101(2), Article No. 023512

  44. Tang DS, Chen LC, Wang LJ et al (2000) J Mater Res 15:560

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Gerlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimi, S., Izadi, H. & Gerlich, A.P. Fabrication of an aluminum–carbon nanotube metal matrix composite by accumulative roll-bonding. J Mater Sci 46, 409–415 (2011). https://doi.org/10.1007/s10853-010-4855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4855-z

Keywords

Navigation