Skip to main content
Log in

Review on oxides of antimony nanoparticles: synthesis, properties, and applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, synthesis methods, properties, and applications of antimony oxide nanoparticles are reviewed. Oxides of antimony exist in three phases, namely antimony trioxide, antimony tetroxide, and antimony pentoxide. Physical and optical properties of these nanoparticles are reviewed and compared with their bulk forms. According to literature works, a total of eight synthesis methods have been used to produce these nanoparticles. The size, distribution, shape, and structure of the nanoparticles which are synthesized by different methods are compiled and compared. It is reported that the properties are strongly dependent on the synthesis methods. Advantages and disadvantages of each synthesis method are discussed and compared. Most literatures report on the optical and physical properties of the nanoparticles. Reports on the electrical properties are scarce. As the applications of these nanoparticles cover a wide range, several challenges must be overcome to use them well. These challenges are also being presented and explained in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Iwanaga H, Fujii M, Takeuchi S (1998) J Cryst Growth 183:190

    Article  CAS  Google Scholar 

  2. Linderoth S, Pedersen MS (1994) J Appl Phys 75:5867

    Article  CAS  ADS  Google Scholar 

  3. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  4. Salata OV (2004) J Nanobiotechnol 2:1

    Article  Google Scholar 

  5. Cao Y, Jin R, Mirkin CA (2001) J Am Chem Soc 123:7961

    Article  CAS  PubMed  Google Scholar 

  6. Morales AM, Lieber CM (1998) Science 279:208

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Bley RA, Kauzlarich SM (1996) J Am Chem Soc 118:12461

    Article  CAS  Google Scholar 

  8. Han WQ, Fan SS, Li QQ, Hu YD (1997) Science 277:1287

    Article  CAS  Google Scholar 

  9. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Wang X, Li YD (2006) Inorg Chem 45:7522

    Article  CAS  PubMed  Google Scholar 

  11. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan HQ (2003) Adv Mater 15:353

    Article  CAS  Google Scholar 

  12. Zeng HC (2006) J Mater Chem 16:649

    Article  CAS  Google Scholar 

  13. Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Prog Solid State Chem 31:5

    Article  CAS  Google Scholar 

  14. Jun YW, Choi JS, Cheon J (2006) Angew Chem Int Ed 45:3414

    Article  CAS  Google Scholar 

  15. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  17. Xu CH, Gao W, He YD (2000) Scripta Mater 42:975

    Article  CAS  Google Scholar 

  18. Xu CH, Woo CH, Shi SQ (2004) Chem Phys Lett 399:62

    Article  CAS  ADS  Google Scholar 

  19. Khanna AS (2002) Introduction to high temperature oxidation and corrosion. ASM International, Materials Park

    Google Scholar 

  20. Samsonov GV (1973) The oxide handbook. IFI/Plenum, New York

    Google Scholar 

  21. Nalin M, Messaddeq Y, Ribeiro SJL, Poulain M, Briois V (2001) J Optoelectron Adv Mater 3:553

    CAS  Google Scholar 

  22. Sahoo NK, Apparao KVSR (1997) Appl Phys A 63:195

    ADS  Google Scholar 

  23. Ozawa K, Sakka Y, Amano M (1998) J Mater Res 13:830

    Article  CAS  ADS  Google Scholar 

  24. Dzimitrowicz DJ, Goodenough JB, Wiseman PJ (1982) Mater Res Bull 17:971

    Article  CAS  Google Scholar 

  25. Chang PR, Yu J, Ma X (2009) Macromol Mater Eng 294:762

    Article  CAS  Google Scholar 

  26. Xie CS, Hu JH, Wu R, Xia H (1999) Nanostruct Mater 11:1061

    Article  CAS  Google Scholar 

  27. Zhang ZL, Guo L, Wang WD (2001) J Mater Res 16:803

    Article  CAS  ADS  Google Scholar 

  28. Ye CH, Wang GY, Kong MG, Zhang LD (2006) J Nanomater 2006:1

    Article  MATH  CAS  Google Scholar 

  29. Edelstein AS, Cammarata RC (1996) Nanomaterials: synthesis, properties and applications. Institute of Physics, Bristol

    Book  Google Scholar 

  30. Zhang JR, Gao L (2004) Mater Chem Phys 87:10

    Article  CAS  Google Scholar 

  31. Toraya H, Yoshimura M, Somiya S (1983) J Am Ceram Soc 66:148

    Article  CAS  Google Scholar 

  32. Chen XY, Huh HS, Lee SW (2008) J Solid State Chem 181:2127

    Article  CAS  ADS  Google Scholar 

  33. Liu YP, Zhang YH, Zhang MW, Zhang WH, Qian YT, Yang L, Wang CS, Chen ZW (1997) Mater Sci Eng B 49:42

    Article  Google Scholar 

  34. Liu YP, Qian YT, Zhang MW, Chen ZY, Wang CS (1996) Mater Lett 26:81

    Article  MATH  CAS  Google Scholar 

  35. Jha AK, Prasad K (2009) Biochem Eng J 43:303

    Article  CAS  Google Scholar 

  36. Jha AK, Prasad K (2009) J Biotechnol 4:1582

    Article  CAS  Google Scholar 

  37. Zeng DW, Xie CS, Zhu BL, Song WL (2004) Mater Lett 58:312

    Article  CAS  Google Scholar 

  38. Zeng DW, Zhu BL, Xie CS, Song WL, Wang AH (2004) Mater Sci Eng A 366:332

    Article  CAS  Google Scholar 

  39. Siegel RW (1994) Nanostruct Mater 4:121

    Article  Google Scholar 

  40. Wu R, Xie CS, Hu JH, Xia H, Wang AH (2000) Scripta Mater 43:841

    Article  CAS  Google Scholar 

  41. Wu R, Xie CS, Xia H, Hu JH, Wang AH (2000) J Cryst Growth 217:274

    Article  CAS  ADS  Google Scholar 

  42. Tigau N, Ciupina V, Prodan G, Rusu GI, Vasile E (2004) J Cryst Growth 269:392

    Article  CAS  ADS  Google Scholar 

  43. Xu CH, Shi SQ, Surya C, Woo CH (2007) J Mater Sci 42:9855. doi:10.1007/s10853-007-1799-z

    Article  CAS  ADS  Google Scholar 

  44. Qiu KQ, Zhang RL (2006) Vacuum 80:1016

    Article  CAS  Google Scholar 

  45. Pillep B, Behrens P, Schubert UA, Spengler J, Knozinger H (1999) J Phys Chem B 103:9595

    Article  CAS  Google Scholar 

  46. Jakab E, Uddin MA, Bhaskar T, Sakata Y (2003) J Anal Appl Pyrolysis 68–69:83

    Article  CAS  Google Scholar 

  47. Jang J, Lee E (2000) Polym Test 20:7

    Article  Google Scholar 

  48. Laachachi A, Cochez M, Ferriol M, Leroy E, Lopez Cuesta JM, Oget N (2004) Polym Degrad Stab 85:641

    Article  CAS  Google Scholar 

  49. Xie XL, Li RKY, Liu QX, Mai YW (2004) Polymer 45:2793

    Article  CAS  Google Scholar 

  50. Brebua M, Jakab E, Sakata Y (2007) J Anal Appl Pyrolysis 79:346

    Article  CAS  Google Scholar 

  51. Sato H, Kondo K, Tsuge S, Ohtani H, Sato N (1998) Polym Degrad Stab 62:41

    Article  CAS  Google Scholar 

  52. Duh B (2002) Polymer 43:3147

    Article  CAS  Google Scholar 

  53. Nanda KK, Sahu SN, Behera SN (2002) Phys Rev A - At Mol Opt Phys 66:132081

    Google Scholar 

  54. Spengler J, Anderle F, Bosch E, Grasselli RK, Pillep B, Behrens P, Lapina OB, Shubin AA, Eberle HJ, Knozinger H (2001) J Phys Chem B 105:10772

    Article  CAS  Google Scholar 

  55. Liu H, Imoto H, Shido T, Iwasawa Y (2001) J Catal 200:69

    Article  CAS  Google Scholar 

  56. Matsumura H, Okumura K, Shimamura T, Ikenaga N, Miyake T, Suzuki T (2006) J Mol Catal A 250:122

    Article  CAS  Google Scholar 

  57. Legouera M, Kostka P, Poulain M (2004) J Phys Chem Solids 65:901

    Article  CAS  ADS  Google Scholar 

  58. Cox DM, Trevor DJ, Whetten RL, Rohlfing EA, Kaldor A (1985) Phys Rev B 32:7290

    Article  CAS  ADS  Google Scholar 

  59. Zhang YX, Li GH, Zhang J, Zhang LD (2004) Nanotechnology 15:762

    Article  CAS  ADS  Google Scholar 

  60. Deng Z, Tang F, Chen D, Meng X, Cao L, Zou B (2006) J Phys Chem B 110:18225

    Article  CAS  PubMed  Google Scholar 

  61. Remy H (1956) Treatise on inorganic chemistry. Elsevier, Amsterdam

    Google Scholar 

  62. Whitten AE, Dittrich B, Spackman MA, Turner P, Brown TC (2004) Dalton Trans 1:23

    Article  PubMed  CAS  Google Scholar 

  63. Svensson C (1974) Acta Crystallogr B 30:458

    Article  CAS  ADS  Google Scholar 

  64. Svensson C (1975) Acta Crystallogr B 31:2016

    Article  Google Scholar 

  65. Amador J, Gutierrez Puebla E, Monge MA, Rasines I, Ruiz Valero C (1988) Inorg Chem 27:1367

    Article  CAS  Google Scholar 

  66. Liu KS, Zhai J, Jiang L (2008) Nanotechnology 19:165604

    Article  ADS  CAS  Google Scholar 

  67. Nyffenegger RM, Craft B, Shaaban M, Gorer S, Erley G, Penner RM (1998) Chem Mater 10:1120

    Article  CAS  Google Scholar 

  68. Tigau N, Ciupina V, Prodan G (2005) J Cryst Growth 277:529

    Article  CAS  ADS  Google Scholar 

  69. Terashima K, Hashimoto T, Uchino T, Kim SH, Yoko T (1996) J Ceram Soc Jpn 104:1008

    CAS  Google Scholar 

  70. Binions R, Carmalt CJ, Parkin IP (2006) Polyhedron 25:3032

    Article  CAS  Google Scholar 

  71. Xiang S, Yang X, Cao T (2000) Nitrogen, phosphorus, and arsenic subgroup. Scientific Press, Beijing

    Google Scholar 

  72. Pinna N, Weiss K, Sack-Kongehl H, Vogel W, Urban J, Pileni MP (2001) Langmuir 17:7982

    Article  CAS  Google Scholar 

  73. Wang L, Tomura S, Ohashi F, Maeda M, Suzuki M, Inukai K (2001) J Mater Chem 11:1465

    Article  CAS  Google Scholar 

  74. Leontidis E, Kyprianidou-Leodidou T, Caseri W, Kyriacou KC (1999) Langmuir 15:3381

    Article  CAS  Google Scholar 

  75. Pileni MP (2001) J Phys Chem B 105:3358

    Article  CAS  Google Scholar 

  76. Cao M, Hu C, Wang Y, Guo Y, Guo C, Wang E (2003) Chem Commun 9:1884

    Article  CAS  Google Scholar 

  77. Biz S, Occelli ML (1998) Catal Rev Sci Eng 40:329

    Article  CAS  Google Scholar 

  78. Ye C, Fang X, Wang Y, Xie T, Zhao A, Zhang L (2004) Chem Lett 33:54

    Article  CAS  Google Scholar 

  79. Wang YL, Jiang XC, Xia YN (2003) J Am Chem Soc 125:16176

    Article  CAS  PubMed  Google Scholar 

  80. Scott RWJ, Coombs N, Ozin GA (2003) J Mater Chem 13:969

    Article  CAS  Google Scholar 

  81. Kempf JY, Maigret B, Crans DC (1996) Inorg Chem 35:6485

    Article  CAS  PubMed  Google Scholar 

  82. Langford JI, Wilson AJC (1978) J Appl Cryst 11:102

    Article  CAS  Google Scholar 

  83. Wagner CNJ, Aqua EN (1964) Adv X-ray Anal 7:46

    CAS  Google Scholar 

  84. Lu J, Ni XW, He AZ (1994) Physics of laser-materials interaction. Mechanical Industry Press Corp, Beijing

    Google Scholar 

  85. Klug HP, Alexander E (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  86. Feng L, Wang J, Liu J, Wang B, Song S (2007) J Compos Mater 41:1487

    Article  CAS  Google Scholar 

  87. Feng L, Liu J, Liao L, Wu J (2005) J Chem Ind Eng 56:2245

    CAS  Google Scholar 

  88. Chiang WY, Hu CH (1999) J Appl Polym Sci 71:865

    Article  CAS  Google Scholar 

  89. Owen SR, Harper JF (1999) Polym Degrad Stab 64:449

    Article  CAS  Google Scholar 

  90. Seddon R, Harper JF (2001) Macromol Symp 169:109

    Article  CAS  Google Scholar 

  91. Montezin F, Lopez Cuesta JM, Crespy A, Georlette P (1997) Fire Mater 21:245

    Article  CAS  Google Scholar 

  92. Tai CM, Li RKY (2001) J Appl Polym Sci 80:2718

    Article  CAS  Google Scholar 

  93. Brebu M, Bhaskar T, Murai K, Muto A, Sakata Y, Uddin MA (2004) Polym Degrad Stab 84:459

    Article  CAS  Google Scholar 

  94. Karak N, Maiti S (1998) J Appl Polym Sci 68:927

    Article  CAS  Google Scholar 

  95. Mostashari SM, Baie S (2008) J Therm Anal Calorim 94:97

    Article  CAS  Google Scholar 

  96. Zhao J, Wang X, Liu C, Xu X, Li Y (2008) Powder Technol 183:220

    Article  CAS  Google Scholar 

  97. Bernett RD, Mitchell A, Brown TC (2004) J Mater Sci 39:1075. doi:10.1023/B:JMSC.0000012947.67817.17

    Article  CAS  ADS  Google Scholar 

  98. Liu H, Iwasawa Y (2002) J Phys Chem B 106:2319

    Article  CAS  Google Scholar 

  99. Zhu BL, Xie CS, Wang AH, Zeng DW, Hu ML, Wang WY (2004) Mater Res Bull 39:409

    Article  CAS  Google Scholar 

  100. Badawy WA, El-Taher EA (1988) Thin Solid Films 158:277

    Article  CAS  ADS  Google Scholar 

  101. Bae JS, Yun DH, Park CO, Hwang JS (2001) Sens Actuators B 75:160

    Article  Google Scholar 

Download references

Acknowledgements

The first author (H.S.C.) would like to express her appreciation to the USM RU-PRGS grant and USM Fellowship for the scholarship and financial support on this project. The second author (K.Y.C.) would like to acknowledge financial support given by USM Short Term Grant (6039038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Yew Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, H.S., Cheong, K.Y. & Razak, K.A. Review on oxides of antimony nanoparticles: synthesis, properties, and applications. J Mater Sci 45, 5993–6008 (2010). https://doi.org/10.1007/s10853-010-4849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4849-x

Keywords

Navigation