Skip to main content

Toughening of epoxy using core–shell particles

Abstract

An epoxy resin, cured using an anhydride hardener, has been modified by the addition of preformed core–shell rubber (CSR) particles which were approximately 100 or 300 nm in diameter. The glass transition temperature, T g, of the cured epoxy polymer was 145 °C. Microscopy showed that the CSR particles were well dispersed through the epoxy matrix. The Young’s modulus and tensile strength were reduced, and the glass transition temperature of the epoxy was unchanged by the addition of the CSR particles. The fracture energy increased from 77 J/m2 for the unmodified epoxy to 840 J/m2 for the epoxy with 15 wt% of 100-nm diameter CSR particles. The measured fracture energies were compared to those using a similar amount of carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber. The CTBN particles provided a larger toughening effect when compared to CSR particles, but reduced the glass transition temperature of the epoxy. For the CSR-modified epoxies, the toughening mechanisms were identified using scanning electron microscopy of the fracture surfaces. Debonding of the cores of the CSR particles from the shells was observed, accompanied by plastic void growth of the epoxy and shell. The observed mechanisms of shear band yielding and plastic void growth were modelled using the Hsieh et al. approach (J Mater Sci 45:1193–1210). Excellent agreement between the experimental and the predicted fracture energies was found. This analysis showed that the major toughening mechanism, responsible for 80–90% of the increase in fracture energy, was the plastic void growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Drake RS, Siebert AR (1975) SAMPE Q 6:11

    CAS  Google Scholar 

  2. Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Polymer 24:1341. doi:10.1016/0032-3861(83)90070-8

    CAS  Article  Google Scholar 

  3. Kinloch AJ (2003) MRS Bull 28:445

    CAS  Google Scholar 

  4. Rowe EH, Siebert AR, Drake RS (1970) Mod Plast 47:110

    CAS  Google Scholar 

  5. Pearson RA, Yee AF (1986) J Mater Sci 21:2475. doi:10.1007/BF01114294

    CAS  Article  Google Scholar 

  6. Pascault JP, Williams RJJ (1999) In: Paul DR, Bucknall CB (eds) Polymer blends, volume 1: formulation. Wiley, New York

  7. Bucknall CB, Partridge IK (1983) Polymer 24:639. doi:10.1016/0032-3861(83)90120-9

    CAS  Article  Google Scholar 

  8. Kinloch AJ, Yuen ML, Jenkins SD (1994) J Mater Sci 29:3781. doi:10.1007/BF00357349

    CAS  Article  Google Scholar 

  9. Day RJ, Lovell PA, Pierre D (1997) Polym Int 44:288

    CAS  Article  Google Scholar 

  10. Qian JY, Pearson RA, Dimonie VL, Elaasser MS (1995) J Appl Polym Sci 58:439

    CAS  Article  Google Scholar 

  11. Shen J, Zhang Y, Qiu J, Kuang J (2004) J Mater Sci 39:6383. doi:10.1023/B:JMSC.0000043763.65417.4f

    CAS  Article  Google Scholar 

  12. Pearson RA, Yee AF (1991) J Mater Sci 26:3828. doi:10.1007/BF01184979

    CAS  Article  Google Scholar 

  13. Lin K-F, Shieh Y-D (1998) J Appl Polym Sci 70:2313

    CAS  Article  Google Scholar 

  14. Becu-Longuet L, Bonnet A, Pichot C, Sautereau H, Maazouz A (1999) J Appl Polym Sci 72:849

    CAS  Article  Google Scholar 

  15. Day RJ, Lovell PA, Wazzan AA (2001) Compos Sci Technol 61:41

    CAS  Article  Google Scholar 

  16. Hayes BS, Seferis JC (2001) Polym Compos 22:451

    CAS  Article  Google Scholar 

  17. Young RJ, Beaumont PWR (1975) J Mater Sci 10:1343. doi:10.1007/BF00540824

    CAS  Article  Google Scholar 

  18. Spanoudakis J, Young RJ (1984) J Mater Sci 19:473. doi:10.1007/BF00553571

    CAS  Article  Google Scholar 

  19. Amdouni N, Sautereau H, Gerard JF (1992) J Appl Polym Sci 46:1723

    CAS  Article  Google Scholar 

  20. Lee J, Yee AF (2000) Polymer 41:8363

    CAS  Article  Google Scholar 

  21. Kawaguchi T, Pearson RA (2003) Polymer 44:4239

    CAS  Article  Google Scholar 

  22. Kitey R, Tippur HV (2005) Acta Mater 53:1167

    CAS  Article  Google Scholar 

  23. Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) J Adhes 79:867

    CAS  Article  Google Scholar 

  24. Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) J Mater Sci 40:5083. doi:10.1007/s10853-005-1716-2

    CAS  Article  Google Scholar 

  25. Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Polymer 46:10506

    CAS  Article  Google Scholar 

  26. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Acta Mater 54:1833

    CAS  Article  Google Scholar 

  27. Kinloch AJ, Masania K, Taylor AC, Sprenger S, Egan D (2008) J Mater Sci 43:1151. doi:10.1007/s10853-007-2390-3

    CAS  Article  Google Scholar 

  28. Sober DJ (2008) Personal Communication. Kaneka, Houston

    Google Scholar 

  29. ISO-527–1 (1993) Plastics—determination of tensile properties—part 1: general principles. ISO, Geneva

    Google Scholar 

  30. ISO-527–2 (1996) Plastics—determination of tensile properties—part 2: test conditions for moulding and extrusion plastics. ISO, Geneva

    Google Scholar 

  31. ISO-13586 (2000) Plastics—determination of fracture toughness (GIC and KIC)—linear elastic fracture mechanics (LEFM) approach. ISO, Geneva

    Google Scholar 

  32. Hsieh T-H, Kinloch AJ, Masania K, Sohn Lee J, Taylor AC, Sprenger S (2010) J Mater Sci 45:1193. doi:10.1007/s10853-009-4064-9

    CAS  Article  Google Scholar 

  33. Fox TG (1956) Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  34. Halpin JC, Pagano NJ (1969) J Compos Mater 3:720

    Google Scholar 

  35. Kerner EH (1956) Proc Phys Soc B 69:808

    Article  Google Scholar 

  36. Nielsen LE (1966) J Appl Polym Sci 10:97

    CAS  Article  Google Scholar 

  37. Ahmed S, Jones FR (1990) J Mater Sci 25:4933. doi:10.1007/BF00580110

    CAS  Article  Google Scholar 

  38. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

  39. Kinloch AJ, Taylor AC (2006) J Mater Sci 41:3271. doi:10.1007/s10853-005-5472-0

    CAS  Article  Google Scholar 

  40. Fornes TD, Paul DR (2003) Polymer 44:4993

    CAS  Article  Google Scholar 

  41. Luo J-J, Daniel IM (2003) Compos Sci Technol 63:1607

    CAS  Article  Google Scholar 

  42. Halpin JC (1969) J Compos Mater 3:732

    Google Scholar 

  43. Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344

    CAS  Article  Google Scholar 

  44. Lewis TB, Nielsen LE (1970) J Appl Polym Sci 14:1449

    CAS  Article  Google Scholar 

  45. McGee S, McCullough RL (1981) Polym Compos 2:149

    CAS  Article  Google Scholar 

  46. Nielsen LE (1968) J Compos Mater 2:120

    Google Scholar 

  47. Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman & Hall, London

    Google Scholar 

  48. Kunz SC, Beaumont PWR (1981) J Mater Sci 16:3141. doi:10.1007/BF00540323

    CAS  Article  Google Scholar 

  49. Andrews EH (1968) Fracture in polymers. Oliver & Boyd, Edinburgh

    Google Scholar 

  50. Sue H-J (1991) Polym Eng Sci 31:275

    CAS  Article  Google Scholar 

  51. Sue H-J (1991) Polym Eng Sci 31:270

    CAS  Article  Google Scholar 

  52. Karger-Kocsis J, Friedrich K (1992) Colloid Polym Sci 270:549

    CAS  Article  Google Scholar 

  53. Cheng C, Hiltner A, Baer E, Soskey PR, Mylonakis SG (1995) J Mater Sci 30:587. doi:10.1007/BF00356315

    CAS  Article  Google Scholar 

  54. Azimi HR, Pearson RA, Hertzberg RW (1996) Polym Eng Sci 36:2352

    CAS  Article  Google Scholar 

  55. Chen TK, Jan YH (1992) J Mater Sci 27:111. doi:10.1007/BF02403652

    CAS  Article  Google Scholar 

  56. Guild FJ, Kinloch AJ, Taylor AC (2010) J Mater Sci 45:3882. doi:10.1007/s10853-010-4447-y

    CAS  Article  Google Scholar 

  57. Huang Y, Kinloch AJ (1992) J Mater Sci 27:2763. doi:10.1007/BF00540703

    CAS  Article  Google Scholar 

  58. Sultan JN, McGarry FJ (1973) Polym Eng Sci 13:29

    CAS  Article  Google Scholar 

  59. Guild FJ, Young RJ (1989) J Mater Sci 24:298. doi:10.1007/BF00660971

    CAS  Article  Google Scholar 

  60. Caddell RM (1980) Deformation and fracture of solids. Prentice-Hall, Englewood Ciffs

    Google Scholar 

  61. Guild FJ, Young RJ (1989) J Mater Sci 24:2454. doi:10.1007/BF01174511

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kaneka (D. Sober) and Nanoresins (S. Sprenger) for the supply of materials. They also acknowledge the EPSRC for a doctoral training award for K. Masania, and Becker Industrial Coatings for supporting G. Giannakopoulos. Some of the equipment used was provided by A.C. Taylor’s Royal Society Mercer Junior Award for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Taylor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giannakopoulos, G., Masania, K. & Taylor, A.C. Toughening of epoxy using core–shell particles. J Mater Sci 46, 327–338 (2011). https://doi.org/10.1007/s10853-010-4816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4816-6

Keywords

  • Fracture Energy
  • Rubber Particle
  • Epoxy Polymer
  • Unmodified Epoxy
  • Rubber Core