Skip to main content

An improved microtensile technique for mechanical characterization of short plant fibers: a case study on bamboo fibers

Abstract

This article aims to present an improved technique for the mechanical characterization of single plant fibers. In particular, our efforts lie in resolving the difficulties involved in the testing of short plant fibers with only a few millimeters in length and tens of microns in width. Such fibers are potentially used as reinforcement phase in polymer composites. A special fiber gripping system, consisting of a pair of fiber clamps, a 3D positioning stage and two digital microscopes, was developed and combined to a small commercial mechanical tester. The resultant testing system possesses great convenience and reliability for the installation, orientation adjustment, and gripping of short plant fibers, as well as powerful control and data analysis functions. The equipment was then applied to the mechanical characterization of single bamboo fibers under air-dried state. Furthermore, the capability of this equipment for studying moisture content-related mechanical and viscoelastic properties of bamboo fibers was also successfully demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Robson D, Hague J, Newman G, Jeronomidis G, Ansell M (1996) Survey of natural materials for use in structural composites as reinforcement and matrices. Woodland Publishing Ltd, Abingdon

    Google Scholar 

  2. Ramires EC, Megiatto JD Jr, Gardrat C, Castellan A, Frollini E (2010) Bioresource Technol 101:1998

    CAS  Article  Google Scholar 

  3. Reddy N, Yang YQ (2009) Bioresource Technol 100:3563

    CAS  Article  Google Scholar 

  4. Li X, Li YH, Zhong ZK, Wang DH, Ratto JA, Sheng KC, Sun XS (2009) Bioresource Technol 100:3556

    CAS  Article  Google Scholar 

  5. Baley C (2002) Composites A 33:939

    Article  Google Scholar 

  6. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 36:2107. doi:10.1023/A:1017512029696

    CAS  Article  Google Scholar 

  7. Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S (2009) Bioresource Technol 100:4742

    CAS  Article  Google Scholar 

  8. Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221

    CAS  Article  Google Scholar 

  9. Burgert I, Gierlinger N, Zimmermann T (2005) Holzforschung 59:240

    CAS  Article  Google Scholar 

  10. Keckes J, Burgert I, Fruhmann K, Muller M, Kolln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg SE, Fratzl P (2003) Nat Mater 2:810

    CAS  Article  Google Scholar 

  11. Fratzl P (2003) Curr Opin Colloid Interface 8:32

    CAS  Article  Google Scholar 

  12. Groom LH, Mott L, Shaler SM (2002) Wood Fiber Sci 34:14

    CAS  Google Scholar 

  13. Groom LH, Shaler S, Mott L (2002) Wood Fiber Sci 34:238

    CAS  Google Scholar 

  14. Mott L, Groom L, Shaler S (2002) Wood and Fiber Sci 34:221

    CAS  Google Scholar 

  15. Burgert I, Frühmann K, Keckes J, Fratzl P, Stanzl-Tschegg SE (2003) Holzforschung 57:661

    CAS  Article  Google Scholar 

  16. Sedighi-Gilani M, Navi P (2007) Wood Sci Technol 41:69

    CAS  Article  Google Scholar 

  17. Silva ECN, Walters MC, Paulino GH (2006) J Mater Sci 41:6991. doi:10.1007/s10853-006-0232-3

    CAS  Article  Google Scholar 

  18. Ray AK, Mondal S, Das SK (2005) J Mater Sci 40:5249. doi:10.1007/s10853-005-4419-9

    CAS  Article  Google Scholar 

  19. Thwe MM, Liao K (2003) J Mater Sci 38:363. doi:10.1023/A:1021130019435

    CAS  Article  Google Scholar 

  20. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) J Mater Sci 43:775. doi:10.1007/s10853-007-1994-y

    CAS  Article  Google Scholar 

  21. Yu Y, Wang G, Qin DC, Zhang B (2007) J Northeast For Univ 35:28

    CAS  Google Scholar 

  22. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Composites B 28:13

    Article  Google Scholar 

  23. Shao ZP, Fang CH, Huang SX, Tian GL (2010) Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood Sci Technol 44 (online)

  24. Olsson AM, Salmén L, Eder M, Burgert I (2007) Wood Sci Technol 41:59

    CAS  Article  Google Scholar 

  25. Walker JCF (2006) Primary wood processing. Principles and practice, 2nd edn. Springer, Dordrecht

    Google Scholar 

Download references

Acknowledgements

We would like to thank 11th Five Years Key Technology R&D Program (2008BADA9B01), “948” Project of State Forestry Administration (2006-4-104) and National Natural and Science Foundation of China (30730076) for financial support. Dr Les Groom is greatly appreciated for the help in the development of devices for microtension of single fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yu.

Additional information

Yan Yu, Benhua Fei, and Ge Wang contributed equally to this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, Y., Jiang, Z., Fei, B. et al. An improved microtensile technique for mechanical characterization of short plant fibers: a case study on bamboo fibers. J Mater Sci 46, 739–746 (2011). https://doi.org/10.1007/s10853-010-4806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4806-8

Keywords

  • Tensile Modulus
  • Plant Fiber
  • Bamboo Fiber
  • Moso Bamboo
  • Fiber Testing