Skip to main content
Log in

Microstructure and toughness of coarse grain heat-affected zone of domestic X70 pipeline steel during in-service welding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructures and mechanical properties of coarse grain heat-affected zone (CGHAZ) of domestic X70 pipeline were investigated. The weld CGHAZ thermal cycles having different cooling time Δt 8/5 were simulated with the Gleeble-1500 thermal/mechanical simulator. The Charpy impact absorbed energy for toughness was measured, and the corresponding fractographs, optical micrographs, and electron micrographs were systematically investigated to study the effect of cooling time on microstructure, impact toughness, and fracture morphology in the CGHAZ of domestic X70 pipeline steel during in-service welding. The results of simulated experiment show that the microstructure of CGHAZ of domestic X70 pipeline steel during in-service welding mainly consists of granular bainite and lath bainite. Martensite–austenite (M–A) constituents are observed at the lath boundaries. With increase in cooling time, the M–A constituents change from elongated shape to massive shape. The reduction of toughness may be affected by not only the M–A constituents but also the coarse bainite sheaves. Accelerating cooling with cooling time Δt 8/5 of 8 s can be chosen in the field in-service welding X70 pipeline to control microstructures and improve toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ouchi C (2001) ISIT Int 41(6):542

    Article  CAS  Google Scholar 

  2. Wang W, Shan Y, Yang K (2009) Mater Sci Eng A 502(1–2):38

    Google Scholar 

  3. Yu H (2008) J Univ Sci Technol Beijing 15(6):683

    CAS  Google Scholar 

  4. Zhao Z, Wang Z, Zhang H, Qiao L (2007) J Univ Sci Technol Beijing 14(5):410

    CAS  Google Scholar 

  5. Avazkonandeh-Gharavol M, Haddad-Sabzevar M, Haerian A (2009) J Mater Sci 44(1):186. doi:10.1007/s10853-008-3103-2

    Article  CAS  Google Scholar 

  6. Chiou C, Yang J, Huang C (2001) Mater Chem Phys 69(1–3):113

    Article  CAS  Google Scholar 

  7. Li Y, Crowther DN, Green MJW, Mitchell PS, Baker TN (2001) ISIJ Int 41(1):46

    Article  CAS  Google Scholar 

  8. Wahab MA, Sabapathy PN, Painter MJ (2005) J Mater Process Technol 168(3):414

    Article  CAS  Google Scholar 

  9. Sathiya P, Aravindan S, Soundararajan R, Noorul Haq A (2009) J Mater Sci 44(1):114. doi:10.1007/s10853-008-3098-8

    Article  CAS  Google Scholar 

  10. Kitagawa Y, Ikeuchi K, Kuroda T, Matsushita Y, Suenaga K, Hidaka T, Takauchi H (2008) J Mater Sci 43(1):12. doi:10.1007/s10853-007-2150-4

    Article  CAS  Google Scholar 

  11. Weertman JR (1993) Mater Sci Eng A 166(1–2):161

    Google Scholar 

  12. Qiu H, Mori H, Enoki M, Kishi T (2000) Metall Mater Trans A 31(11):2785

    Article  Google Scholar 

  13. Ikawa H, Oshige H, Tanoue T (1980) Trans Jpn Weld Soc 11(2):3

    CAS  Google Scholar 

  14. Raj B, Saroja S, Laha K, Karthikeyan T, Vijayalakshmi M, Bhanu Sankara Rao K (2009) J Mater Sci 44(9):2239. doi:10.1007/s10853-008-3199-4

    Article  CAS  Google Scholar 

  15. Wang S-C, Yang J-R (1992) Mater Sci Eng A 154(1):43

    Article  Google Scholar 

  16. Shi Y, Han Z (2008) J Mater Process Technol 207(1–3):30. doi:10.1016/j.jmatprotec.2007.12.049

    Article  CAS  Google Scholar 

  17. Taban E (2008) J Mater Sci 43(12):4309. doi:10.1007/s10853-008-2632-z

    Article  CAS  Google Scholar 

  18. Shibata K, Asakura K (1995) ISIJ Int 35(8):982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the supports of Innovation Fund for Doctors of China University of Petroleum (B2009-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Wang, Y., Han, T. et al. Microstructure and toughness of coarse grain heat-affected zone of domestic X70 pipeline steel during in-service welding. J Mater Sci 46, 727–733 (2011). https://doi.org/10.1007/s10853-010-4803-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4803-y

Keywords

Navigation