Abstract
This study presents evidence that the microstructural stability of fine-grained and nanocrystalline Cu is improved by alloying with Sb. Experimentally, Cu100−x Sb x alloys are cast in three compositions (Cu-0.0, 0.2, and 0.5 at.%Sb) and extruded into fine-grained form (with average grain diameter of 350 nm) by equal channel angular extrusion. Alloying the Cu specimens with Sb causes an increase in the temperature associated with microstructural evolution to 400 °C, compared to 250 °C for pure Cu. This is verified by measurements of microhardness, ultimate tensile strength, and grain size using transmission electron microscopy. Complementary molecular dynamics (MD) simulations are performed on nanocrystalline Cu–Sb alloy models (with average grain diameter of 10 nm). MD simulations show fundamentally that Sb atoms placed at random sites along the grain boundaries can stabilize the nanocrystalline Cu microstructure during an accelerated annealing process.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Acta Mater 55:4041
Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427
Weertman JR (1993) Hall-petch strengthening in nanocrystalline metals. Mater Sci Eng A 166:161
Gleiter H (2000) Acta Mater 48:1
Ganapathi SK, Owen DM, Chokshi AH (1991) Scripta Metall Mater 25:2699
Gunther B, Kumpmann A, Kunze HD (1992) Scripta Metall Mater 27:833
Gertsman VY, Birringer R (1994) Scripta Metall Mater 30:577
Rajgarhia RK, Koh SW, Spearot D, Saxena A (2008) Mol Simul 34:35
Moelle CH, Fecht HJ (1995) Nanostruct Mater 6:421
Zhang K, Weertman JR, Eastman JA (2005) Appl Phys Lett 87:61921
Hibbard GD, Radmilovic V, Aust KT, Erb U (2008) Mater Sci Eng A 494:232
Ames M, Markmann J, Karos R, Michels A, Tschope A, Birringer R (2008) Acta Mater 56:4255
Sansoz F, Dupont V (2006) Appl Phys Lett 89:111901
Farkas D, Froseth A, Van Swygenhoven H (2006) Scripta Mater 55:695
Natter H, Schmelzer M, Loffler MS, Krill CE, Fitch A, Hempelmann R (2000) J Phys Chem B 104:2467
Li JCM (2006) Phys Rev Lett 96:215506
Weissmuller J (1994) J Mater Res 9:4
Kirchheim R (2002) Acta Mater 50:413
Millett PC, Selvam RP, Saxena A (2007) Acta Mater 55:2329
Millett PC, Selvam RP, Saxena A (2006) Acta Mater 54:297
Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143
Randle V (1996) The role of the coincidence site lattice in grain boundary engineering. Institute of Materials, London
Chen Z, Liu F, Wang HF, Yang W, Yang GC, Zhou YH (2009) Acta Mater 57:1466
Li J, Wang J, Yang G (2009) Scripta Mater 60:945
Detor AJ, Schuh CA (2007) Acta Mater 55:4221
Botcharova E, Freudenberger J, Schultz L (2006) Acta Mater 54:3333
Wang YM, Jankowski AF, Hamza AV (2007) Scripta Mater 57:301
Suryanarayanan R, Frey CA, Sastry SML, Waller BE, Buhro WE (1999) Mater Sci Eng A 264:210
Mehta SC, Smith DA, Erb U (1995) Mater Sci Eng A A204:227
Liu F, Chen Z, Yang W, Yang CL, Wang HF, Yang GC (2007) Mater Sci Eng A 457:13
Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Scripta Mater 59:530
Krill CE, Klein R, Janes S, Birringer R (1995) Mater Sci Forum 179–181:443
Liu KW, Mucklich F (2001) Acta Mater 49:395
Weissmuller J, Krauss W, Haubold T, Birringer R, Gleiter H (1992) Nanostruct Mater 1:439
Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103
Dalla Torre FH, Gazder AA, Pereloma EV, Davies CHJ (2007) J Mater Sci 42:1622. doi:10.1007/s10853-006-1283-1
Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Phys Rev B 63:224101
Zimmerman JA, Gao H, Abraham FF (2000) Model Simul Mater Sci Eng 8:103
Van Swygenhoven H, Derlet PM, Froseth AG (2004) Nat Mater 3:399
Millett PC, Selvam RP, Saxena A (2006) Mater Sci Eng A 431:92
Subramanian PR, Chakrabarti DJ, Laughlin DE, Massalshi TB (1993) Phase diagrams of binary copper alloys. ASM International, Materials Park
Staley JT Jr, Saxena A (1990) Acta Metall 38:897
Schaffer J, Saxena A, Sanders T, Antolovich S, Warner S (2000) Science and design of engineering materials, 2nd edn. McGraw-Hill Science, New York
Haas V, Gleiter H, Birringer R (1993) Scripta Metall Mater 28:721
Koch CC (1993) Nanostruct Mater 2:109
Beyerlein IJ, Toth LS, Tome CN, Suwas S (2007) Philos Mag 87:885
Xue Q, Beyerlein IJ, Alexander DJ, Gray Iii GT (2007) Acta Mater 55:655
Aggarwal AO, Markondeya Raj P, Pratap RJ, Saxena A, Tummala RR (2002) Design and fabrication of high aspect ratio fine pitch interconnects for wafer level packaging. In: Proceedings 4th electronics packaging technology conference (EPTC 2002)
Bansal S, Saxena A, Tummala RR (2004) Nanocrystalline copper and nickel as ultra high-density chip-to-package interconnections. In: Proceedings—electronic components and technology conference
Randle V, Engler O (2000) Introduction to textru analysis: macrotexture, microtexture and orientation mapping. Gordon and Breach Science Publishers, London
Rajgarhia R, Spearot DE, Saxena A (2010) J Mater Res 25:411
Plimpton SJ, Large-scale atomic/molecular massively parallel simulator, http://lammps.sandia.gov
Rajgarhia R, Spearot DE, Saxena A (2008) Comput Mater Sci 44:1258
Spearot DE, Jacob KI, McDowell DL (2005) Acta Mater 53:3579
Spearot DE, McDowell DL (2009) J Eng Mater Technol 131:041204
Rajgarhia RK, Spearot DE, Saxena A (2009) Model Simul Mater Sci Eng 17:055001
Mackenzie JK (1958) Biometrika 45:229
Froseth AG, Van Swygenhoven H, Derlet PM (2005) Acta Mater 53:4847
Kelchner CL, Plimpton SJ, Hamilton JC (1998) Phys Rev B 58:11085
Hoover WG (1985) Phys Rev A 31:1695
Melchionna S, Ciccotti G, Holian BL (1993) Mol Phys 78:533
Acknowledgements
Funding for this work was provided by the Irma and Raymond Giffels’ Endowed Chair in Engineering at the University of Arkansas. DES appreciates additional support from Oak Ridge Associated Universities via the Ralph E. Powe Junior Faculty Enhancement Award. Molecular dynamics simulations were performed on “Star of Arkansas”, funding for which was provided in part by the National Science Foundation under Grant MRI #072265. Support from the Department of Energy for conducting the TEM, OIM and Auger Spectroscopy analysis at the SHaRE User Facility at the Oak Ridge National Laboratory is acknowledged. TEM, OIM and Auger Electron Spectroscopy analysis were performed at the Oak Ridge National Laboratory SHaRE User Facility that is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. Support from the Texas Engineering Experiment Station for ECAE processing is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rajgarhia, R.K., Saxena, A., Spearot, D.E. et al. Microstructural stability of copper with antimony dopants at grain boundaries: experiments and molecular dynamics simulations. J Mater Sci 45, 6707–6718 (2010). https://doi.org/10.1007/s10853-010-4764-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-010-4764-1