Skip to main content
Log in

Microstructural stability of copper with antimony dopants at grain boundaries: experiments and molecular dynamics simulations

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study presents evidence that the microstructural stability of fine-grained and nanocrystalline Cu is improved by alloying with Sb. Experimentally, Cu100−x Sb x alloys are cast in three compositions (Cu-0.0, 0.2, and 0.5 at.%Sb) and extruded into fine-grained form (with average grain diameter of 350 nm) by equal channel angular extrusion. Alloying the Cu specimens with Sb causes an increase in the temperature associated with microstructural evolution to 400 °C, compared to 250 °C for pure Cu. This is verified by measurements of microhardness, ultimate tensile strength, and grain size using transmission electron microscopy. Complementary molecular dynamics (MD) simulations are performed on nanocrystalline Cu–Sb alloy models (with average grain diameter of 10 nm). MD simulations show fundamentally that Sb atoms placed at random sites along the grain boundaries can stabilize the nanocrystalline Cu microstructure during an accelerated annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Acta Mater 55:4041

    Article  CAS  Google Scholar 

  2. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  3. Weertman JR (1993) Hall-petch strengthening in nanocrystalline metals. Mater Sci Eng A 166:161

    Article  Google Scholar 

  4. Gleiter H (2000) Acta Mater 48:1

    Article  CAS  Google Scholar 

  5. Ganapathi SK, Owen DM, Chokshi AH (1991) Scripta Metall Mater 25:2699

    Article  Google Scholar 

  6. Gunther B, Kumpmann A, Kunze HD (1992) Scripta Metall Mater 27:833

    Article  Google Scholar 

  7. Gertsman VY, Birringer R (1994) Scripta Metall Mater 30:577

    Article  CAS  Google Scholar 

  8. Rajgarhia RK, Koh SW, Spearot D, Saxena A (2008) Mol Simul 34:35

    Article  CAS  Google Scholar 

  9. Moelle CH, Fecht HJ (1995) Nanostruct Mater 6:421

    Article  CAS  Google Scholar 

  10. Zhang K, Weertman JR, Eastman JA (2005) Appl Phys Lett 87:61921

    Article  Google Scholar 

  11. Hibbard GD, Radmilovic V, Aust KT, Erb U (2008) Mater Sci Eng A 494:232

    Article  Google Scholar 

  12. Ames M, Markmann J, Karos R, Michels A, Tschope A, Birringer R (2008) Acta Mater 56:4255

    Article  CAS  Google Scholar 

  13. Sansoz F, Dupont V (2006) Appl Phys Lett 89:111901

    Article  ADS  Google Scholar 

  14. Farkas D, Froseth A, Van Swygenhoven H (2006) Scripta Mater 55:695

    Article  CAS  Google Scholar 

  15. Natter H, Schmelzer M, Loffler MS, Krill CE, Fitch A, Hempelmann R (2000) J Phys Chem B 104:2467

    Article  CAS  Google Scholar 

  16. Li JCM (2006) Phys Rev Lett 96:215506

    Article  ADS  PubMed  Google Scholar 

  17. Weissmuller J (1994) J Mater Res 9:4

    Article  ADS  Google Scholar 

  18. Kirchheim R (2002) Acta Mater 50:413

    Article  CAS  Google Scholar 

  19. Millett PC, Selvam RP, Saxena A (2007) Acta Mater 55:2329

    Article  CAS  Google Scholar 

  20. Millett PC, Selvam RP, Saxena A (2006) Acta Mater 54:297

    Article  CAS  Google Scholar 

  21. Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143

    Article  CAS  Google Scholar 

  22. Randle V (1996) The role of the coincidence site lattice in grain boundary engineering. Institute of Materials, London

    Google Scholar 

  23. Chen Z, Liu F, Wang HF, Yang W, Yang GC, Zhou YH (2009) Acta Mater 57:1466

    Article  CAS  Google Scholar 

  24. Li J, Wang J, Yang G (2009) Scripta Mater 60:945

    Article  CAS  Google Scholar 

  25. Detor AJ, Schuh CA (2007) Acta Mater 55:4221

    Article  CAS  Google Scholar 

  26. Botcharova E, Freudenberger J, Schultz L (2006) Acta Mater 54:3333

    Article  CAS  Google Scholar 

  27. Wang YM, Jankowski AF, Hamza AV (2007) Scripta Mater 57:301

    Article  CAS  Google Scholar 

  28. Suryanarayanan R, Frey CA, Sastry SML, Waller BE, Buhro WE (1999) Mater Sci Eng A 264:210

    Article  Google Scholar 

  29. Mehta SC, Smith DA, Erb U (1995) Mater Sci Eng A A204:227

    CAS  Google Scholar 

  30. Liu F, Chen Z, Yang W, Yang CL, Wang HF, Yang GC (2007) Mater Sci Eng A 457:13

    Article  Google Scholar 

  31. Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Scripta Mater 59:530

    Article  CAS  Google Scholar 

  32. Krill CE, Klein R, Janes S, Birringer R (1995) Mater Sci Forum 179–181:443

    Article  Google Scholar 

  33. Liu KW, Mucklich F (2001) Acta Mater 49:395

    Article  CAS  Google Scholar 

  34. Weissmuller J, Krauss W, Haubold T, Birringer R, Gleiter H (1992) Nanostruct Mater 1:439

    Article  Google Scholar 

  35. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  36. Dalla Torre FH, Gazder AA, Pereloma EV, Davies CHJ (2007) J Mater Sci 42:1622. doi:10.1007/s10853-006-1283-1

    Article  CAS  ADS  Google Scholar 

  37. Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Phys Rev B 63:224101

    Article  ADS  Google Scholar 

  38. Zimmerman JA, Gao H, Abraham FF (2000) Model Simul Mater Sci Eng 8:103

    Article  CAS  ADS  Google Scholar 

  39. Van Swygenhoven H, Derlet PM, Froseth AG (2004) Nat Mater 3:399

    Article  ADS  PubMed  Google Scholar 

  40. Millett PC, Selvam RP, Saxena A (2006) Mater Sci Eng A 431:92

    Article  Google Scholar 

  41. Subramanian PR, Chakrabarti DJ, Laughlin DE, Massalshi TB (1993) Phase diagrams of binary copper alloys. ASM International, Materials Park

    Google Scholar 

  42. Staley JT Jr, Saxena A (1990) Acta Metall 38:897

    Article  CAS  Google Scholar 

  43. Schaffer J, Saxena A, Sanders T, Antolovich S, Warner S (2000) Science and design of engineering materials, 2nd edn. McGraw-Hill Science, New York

    Google Scholar 

  44. Haas V, Gleiter H, Birringer R (1993) Scripta Metall Mater 28:721

    Article  CAS  Google Scholar 

  45. Koch CC (1993) Nanostruct Mater 2:109

    Article  CAS  Google Scholar 

  46. Beyerlein IJ, Toth LS, Tome CN, Suwas S (2007) Philos Mag 87:885

    Article  CAS  ADS  Google Scholar 

  47. Xue Q, Beyerlein IJ, Alexander DJ, Gray Iii GT (2007) Acta Mater 55:655

    Article  CAS  Google Scholar 

  48. Aggarwal AO, Markondeya Raj P, Pratap RJ, Saxena A, Tummala RR (2002) Design and fabrication of high aspect ratio fine pitch interconnects for wafer level packaging. In: Proceedings 4th electronics packaging technology conference (EPTC 2002)

  49. Bansal S, Saxena A, Tummala RR (2004) Nanocrystalline copper and nickel as ultra high-density chip-to-package interconnections. In: Proceedings—electronic components and technology conference

  50. Randle V, Engler O (2000) Introduction to textru analysis: macrotexture, microtexture and orientation mapping. Gordon and Breach Science Publishers, London

    Google Scholar 

  51. Rajgarhia R, Spearot DE, Saxena A (2010) J Mater Res 25:411

    Article  CAS  ADS  Google Scholar 

  52. Plimpton SJ, Large-scale atomic/molecular massively parallel simulator, http://lammps.sandia.gov

  53. Rajgarhia R, Spearot DE, Saxena A (2008) Comput Mater Sci 44:1258

    Article  Google Scholar 

  54. Spearot DE, Jacob KI, McDowell DL (2005) Acta Mater 53:3579

    Article  CAS  Google Scholar 

  55. Spearot DE, McDowell DL (2009) J Eng Mater Technol 131:041204

    Article  Google Scholar 

  56. Rajgarhia RK, Spearot DE, Saxena A (2009) Model Simul Mater Sci Eng 17:055001

    Article  ADS  Google Scholar 

  57. Mackenzie JK (1958) Biometrika 45:229

    MATH  MathSciNet  Google Scholar 

  58. Froseth AG, Van Swygenhoven H, Derlet PM (2005) Acta Mater 53:4847

    Article  CAS  Google Scholar 

  59. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Phys Rev B 58:11085

    Article  CAS  ADS  Google Scholar 

  60. Hoover WG (1985) Phys Rev A 31:1695

    Article  ADS  PubMed  Google Scholar 

  61. Melchionna S, Ciccotti G, Holian BL (1993) Mol Phys 78:533

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the Irma and Raymond Giffels’ Endowed Chair in Engineering at the University of Arkansas. DES appreciates additional support from Oak Ridge Associated Universities via the Ralph E. Powe Junior Faculty Enhancement Award. Molecular dynamics simulations were performed on “Star of Arkansas”, funding for which was provided in part by the National Science Foundation under Grant MRI #072265. Support from the Department of Energy for conducting the TEM, OIM and Auger Spectroscopy analysis at the SHaRE User Facility at the Oak Ridge National Laboratory is acknowledged. TEM, OIM and Auger Electron Spectroscopy analysis were performed at the Oak Ridge National Laboratory SHaRE User Facility that is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. Support from the Texas Engineering Experiment Station for ECAE processing is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Spearot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajgarhia, R.K., Saxena, A., Spearot, D.E. et al. Microstructural stability of copper with antimony dopants at grain boundaries: experiments and molecular dynamics simulations. J Mater Sci 45, 6707–6718 (2010). https://doi.org/10.1007/s10853-010-4764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4764-1

Keywords

Navigation