Skip to main content
Log in

Effects of sintering temperature on the microstructure and dielectric properties of titanium dioxide ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured (~200 nm grain size) titanium dioxide (TiO2) ceramics were densified at temperature as low as 800 °C by pressureless sintering in a pure oxygen atmosphere. Phase transition and microstructural development of sintered samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Dielectric properties including d.c. conductivity, dielectric constant, loss tangent, and dielectric breakdown strength (BDS) were determined for samples sintered at various temperatures. The influence of sintering temperature on the microstructural development, defect chemistry, and dielectric properties of TiO2 is discussed. Nanostructured TiO2 ceramics with high sintering density (>98%) lead to improved dielectric properties; high BDS (~1800 kV/cm), low electrical conductivity (~5 × 10−15 S/cm), high dielectric constant (~130), and low loss tangent (~0.09% at 1 kHz), which is promising for application in high energy density capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yeh YC, Tseng TT, Chang DA (1989) J Am Ceram Soc 72:1472

    Article  CAS  Google Scholar 

  2. Fukushima K, Yamada I (1989) J Appl Phys 65:619

    Article  CAS  ADS  Google Scholar 

  3. Regan BO, Graetzel M (1991) Nature (London) 353:737

    Article  ADS  Google Scholar 

  4. Bard AJ (1980) Science 207:139

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Ha HY, Nam SW, Lim TH, Oh IH, Hong SA (1996) J Membr Sci 111:81

    Article  CAS  Google Scholar 

  6. Hoffman MR, Martin ST, Choi W, Bahenmann DW (1995) Chem Rev 95:69

    Article  Google Scholar 

  7. Dervos CT, Thirios EF, Novacovich J, Vassiliou P, Skafidas P (2004) Mater Lett 58:1502

    Article  CAS  Google Scholar 

  8. Ye Y, Zhang SC, Dogan F, Schamiloglu E, Gaudet J, Castro P, Roybal M, Joler M, Christodoulou C (2003) 14th IEEE Int 1:719.

  9. Chen XQ, Gu GB, Liu HB, Cao ZN (2004) J Am Ceram Soc 87:1035

    Article  CAS  Google Scholar 

  10. Lee KR, Kim SJ, Song JS, Lee JH, Chung YJ, Park S (2002) J Am Ceram Soc 85:341

    Article  CAS  Google Scholar 

  11. Kim JH, Fujita S, Shiratori S (2006) Thin Solid Films 499:83

    Article  CAS  ADS  Google Scholar 

  12. Zhou XS, Lin YH, Li B, Li LJ, Zhou JP, Nan CW (2006) J Phys D 39:558

    Article  CAS  ADS  Google Scholar 

  13. Hahn H, Logas J, Averback RS (1996) J Mater Res 5:609

    Article  ADS  Google Scholar 

  14. Liao SC, Colaizzi J, Chen YJ, Kear BH, Mayo WE (2000) J Am Ceram Soc 83:2163

    Article  CAS  Google Scholar 

  15. Angerer P, Yu LG, Khor KA, Krumpel G (2004) Mater Sci Eng A 381:16

    Article  Google Scholar 

  16. Yoshimura M, Bowen HK (1981) J Am Ceram Soc 64:404

    Article  CAS  Google Scholar 

  17. Chao S, Petrovsky V, Dogan F (2006) Proceeding of advanced dielectric materials and electronic devices, materials science and technology (MS&T) 2006: materials and systems, vol 1, p 707

  18. Lee YI, Lee JH, Hong SH, Kim DY (2003) Mater Res Bull 38:925

    Article  CAS  Google Scholar 

  19. Campbell IE, Sherwood EM (eds) (1967) High-temperature materials and technology. Wiley, New York

    Google Scholar 

  20. Eastman JA (1994) J Appl Phys 75:770

    Article  CAS  ADS  Google Scholar 

  21. Tobar ME, Krupka J, Ivanov EN, Woode RA (1998) J Appl Phys 83:1604

    Article  CAS  ADS  Google Scholar 

  22. Tuller HL, Nowick AS (1977) J Phys Chem Solids 38:859

    Article  CAS  ADS  Google Scholar 

  23. Yan MF, Cannon RM, Bowen HK (1983) J Appl Phys 54:764

    Article  CAS  ADS  Google Scholar 

  24. Wang QL, Varghese O, Grimes CA, Dickey EC (2007) Solid State Ion 178:187

    Article  CAS  Google Scholar 

  25. Guo X, Maier J (2001) J Electrochem Soc 148:E121

    Article  CAS  Google Scholar 

  26. Macdonald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  27. Wynblatt P, Rohrer GS, Papillon F (2003) J Eur Ceram Soc 23:2841

    Article  CAS  Google Scholar 

  28. Bak T, Nowotny J, Rekas M, Sorrell CC (2003) J Phys Chem Solids 64:1043

    Article  CAS  ADS  Google Scholar 

  29. Hoshino K, Peterson NL, Wiley CL (1985) J Phys Chem Solids 46:1397

    Article  CAS  ADS  Google Scholar 

  30. Pullar RC, Penn SJ, Wang XR, Reaney IM, Alford NM (2009) J Eur Ceram Soc 29:419

    Article  CAS  Google Scholar 

  31. Song SH, Wang X, Xiao P (2002) Mater Sci Eng B 94:40

    Article  Google Scholar 

  32. Morse CT, Hill GJ (1970) Proc Br Ceram Soc 18:23

    Google Scholar 

  33. Young AL, Hilmas GE, Zhang SC, Schwartz RW (2007) J Mater Sci 42:5613. doi:10.1007/s10853-006-1116-2

    Article  CAS  ADS  Google Scholar 

  34. Beauchamp EK (1971) J Am Ceram Soc 54:484

    Article  CAS  Google Scholar 

  35. Tunkasiri T, Rujijanagul G (1996) J Mater Sci Lett 15:1767

    Article  CAS  Google Scholar 

  36. Yang Y (2003) Master Thesis, University of Missouri-Rolla

  37. Carabajar S, Olagnon C, Fantozzi G, Gressus CL (1995) IEEE Annu Rep 11:278

    Google Scholar 

  38. Souni ME, Oja I, Krunks M (2004) J Mater Sci Mater Electron 15:341

    Article  Google Scholar 

  39. Kishimoto A, Koumoto K, Yanagida H (1989) J Am Ceram Soc 72:1373

    Article  CAS  Google Scholar 

  40. McPherson J, Kim JY, Shanware A, Mogul H (2003) Appl Phys Lett 82:2121

    Article  CAS  ADS  Google Scholar 

  41. Owate IO, Freer R (1992) J Appl Phys 72:2418

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Wayne Huebner and Dr. Robert Schwartz (Missouri University of Science and Technology) for their valuable suggestions. This work was supported by a MURI program sponsored by Office of Naval Research under Grant No. N000-14-05-1-0541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Dogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, S., Petrovsky, V. & Dogan, F. Effects of sintering temperature on the microstructure and dielectric properties of titanium dioxide ceramics. J Mater Sci 45, 6685–6693 (2010). https://doi.org/10.1007/s10853-010-4761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4761-4

Keywords

Navigation