Skip to main content
Log in

Investigation of solidification behavior and associate microstructures of Co–Cr–W and Co–Cr–Mo alloy systems using DSC technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article presents a study of solidification behavior and the corresponding microstructure of Co–Cr–W and Co–Cr–Mo alloy systems using the differential scanning calorimetry technique. The influence of main constituents on the solidification behavior and associate microstructures of these alloys are investigated. It is found that chemical composition influences significantly the solidification behavior of cobalt-based alloys. Solution-strengthened alloy has the highest solidification temperature and narrowest solidification range. Presence of carbon decreases the solidification temperature and increases the solidification range. Addition of boron greatly decreases the solidification temperature. Carbon content dominates the solidification behavior of cobalt-based alloys when the contents of the solution-strengthening elements Mo and Ni are within their saturation in the solution matrix. However, as these contents reach a certain level, formation of intermetallic compounds changes the solidification behavior of these alloys remarkably. Increase in the contents of solution-strengthening elements reduces the solid solution transformation temperature and the eutectic temperature when carbon content is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davis JR (2000) Nickel, cobalt and their alloys. ASM International, Materials Park

    Google Scholar 

  2. Betteridge W (1982) Cobalt and its alloys. Halsted Press, Chichester

    Google Scholar 

  3. Yu LX, Zhao YT, Yang SL, Sun WR, Guo SR, Sun XF, Hu ZQ (2010) J Mater Sci 45(13):3448. doi:10.1007/s10853-010-4372-0

    Article  CAS  Google Scholar 

  4. Curiotto S, Battezzati L, Johnson E, Palumbo M, Pryds N (2008) J Mater Sci 43(9):3253. doi:10.1007/s10853-008-2540-2

    Article  CAS  ADS  Google Scholar 

  5. Zuo M, Liu XF, Sun QQ (2009) J Mater Sci 44(8):1952. doi:10.1007/s10853-009-3287-0

    Article  CAS  ADS  Google Scholar 

  6. Sidhu RK, Ojo OA, Chaturvedi MC (2008) J Mater Sci 43(10):3612. doi:10.1007/s10853-008-2575-4

    Article  CAS  ADS  Google Scholar 

  7. Huang P, Liu R, Wu XJ, Yao MX (2007) J Eng Mater Technol 129(4):523

    Article  CAS  Google Scholar 

  8. Ando K, Omori T, Sato J, Sutou Y, Oikawa K, Kainuma R, Ishida K (2006) Mater Trans 47(9):2381

    Article  CAS  Google Scholar 

  9. Riddihough M (1970) Tribology 3(4):211

    Article  CAS  Google Scholar 

  10. Ashworth MA, Bryar JC, Jacobs MH, Davies S (1999) Powder Metall 42(3):243

    Article  CAS  Google Scholar 

  11. Liu R, Yao MX, Wu XJ (2004) J Eng Mater Technol 126:204

    Article  CAS  Google Scholar 

  12. Cameron CB, Ferriss DP (1975) Anti-Corrosion Method Mater 22(4):5

    Article  Google Scholar 

  13. Mason SE, Rawlings RD (1985) J Mater Sci 20(4):1248. doi:10.1007/BF01026320

    Article  ADS  Google Scholar 

  14. Raghu D, Wu JB (1977) Mater Perform 36(11):27

    ADS  Google Scholar 

  15. Campos I, Ramirez G, Figueroa U, Velazquez C (2007) Surf Eng 23(3):216

    Article  CAS  Google Scholar 

  16. Campos I, Ramirez G, Figueroa U, Martinez J, Morales O (2007) Appl Surf Sci 253(7):3469

    Article  CAS  ADS  Google Scholar 

  17. Liu YN, Yang H, Tan G, Miyazaki S, Jiang BH, Liu Y (2004) J Alloys Compd 368(14):157

    Article  CAS  Google Scholar 

  18. Frenk A, Kurz W (1994) Wear 174:81

    Article  CAS  Google Scholar 

  19. Schneibel JH, Ritchie RO, Kruzic JJ, Tortorelli PF (2005) Metall Mater Trans A 36:525

    Article  Google Scholar 

  20. Maroef IS, Rowe MD, Edwards GR (2005) In: Bollinghaus Th, Herold H (eds) Hot crack phenomena in welds. Springer, Berlin/Heidelberg

  21. Baker H (1992) In: ASM handbook, vol 3. ASM International, Materials Park

  22. Davis JR (1998) Metals handbook. ASM International, Materials Park

    Google Scholar 

  23. Liu R, Xu W, Yao MX, Patnaik PC, Wu XJ (2005) Scr Mater 53(12):1351

    Article  CAS  Google Scholar 

  24. Xu W, Liu R, Patnaik PC, Yao MX, Wu XJ (2007) Mater Sci Eng A 452–453:427

    Google Scholar 

Download references

Acknowledgement

The authors are grateful for financial support from the Natural Science & Engineering Research Council of Canada (NSERC), and both financial and in-kind support from Deloro Stellite Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Xi, S.Q., Kapoor, S. et al. Investigation of solidification behavior and associate microstructures of Co–Cr–W and Co–Cr–Mo alloy systems using DSC technique. J Mater Sci 45, 6225–6234 (2010). https://doi.org/10.1007/s10853-010-4717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4717-8

Keywords

Navigation