Skip to main content
Log in

Microstructure and texture development in single layered and heterolayered PZT thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single-layered Pb(Zr0.7Ti0.3)O3 and Pb(Zr0.3Ti0.7)O3 thin films and heterolayered Pb(Zr1−x Ti x )O3 thin films consisting of alternating Pb(Zr0.7Ti0.3)O3 and Pb(Zr0.3Ti0.7)O3 layers were studied for their microstructure and texture development. The texture in the single-layered PZT films is affected by the Zr/Ti ratio as they have different crystallization behavior depending on the Zr/Ti ratio. With increasing film thickness, the average grain size of Pb(Zr1−x Ti x )O3 increases. An unusually large grain size of 1–3 μm together with a strong (001)/(100) preferred orientation were observed for the heterolayered PZ70T30, whereby Pb(Zr0.7Ti0.3)O3 was used as the seeding layer, for film as thin as 150 nm. The film microstructure is refined drastically when the stacking sequence is changed, i.e., when Pb(Zr0.3Ti0.7)O3 is employed as the seeding layer. Thermal treatment of the PZ70T30 seeding layer also plays an important function in the microstructure development of the heterolayered PZ70T30 film. The formation of the large-grained film is correlated to the lowered nucleation energy of crystallizing Pb(Zr0.7Ti0.3)O3 by the top Pb(Zr0.3Ti0.7)O3. The Pb(Zr0.3Ti0.7)O3 layer facilitated the nucleation and crystallization of the Pb(Zr0.7Ti0.3)O3 amorphous seeding layer, whereby the overall microstructure of the heterolayered thin film was dictated by the Pb(Zr0.7Ti0.3)O3 seeding layer leading to the growth of larger PZT grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Brooks KG, Reaney IM, Klissurska R, Huang Y, Bursil L, Setter N (1994) J Mater Res 9:2540

    Article  CAS  ADS  Google Scholar 

  2. Cheng J, Meng Z (2000) J Mater Sci Lett 19:1945

    Article  CAS  Google Scholar 

  3. Kwok CK, Desu SB (1993) J Mater Res 8:339

    Article  ADS  Google Scholar 

  4. Spierings GAMC, Zon JBAv, Klee M, Larsen PK (1993) Integr Ferroelectr 3:283

    Article  CAS  Google Scholar 

  5. Zhang S, Liu J, Yang C (2006) Integr Ferroelectr 84:99

    Article  CAS  Google Scholar 

  6. Kartawidjaja FC, Sim CH, Wang J (2009) J Mater Sci 44:5375. doi:10.1007/s10853-009-3569-6

    Article  CAS  ADS  Google Scholar 

  7. Yan F, Bao P, Chan LW, Choy CL, Wang Y (2002) Thin Solid Films 406:282

    Article  CAS  ADS  Google Scholar 

  8. Hirano S, Yugo T, Kikuta K, Araki Y, Saitoh M, Ogasahara S (1992) J Am Ceram Soc 75:2785

    Article  CAS  Google Scholar 

  9. Hwang KS, Manabe T, Nagahama T, Yamaguchi I, Kumagai T, Mizuta S (1999) Thin Solid Films 347:106

    Article  CAS  ADS  Google Scholar 

  10. Wood VE, Busch JR, Ramamurthi SD, Swartz SL (1992) J Appl Phys 71:4557

    Article  CAS  ADS  Google Scholar 

  11. Choi JJ, Park CS, Park GT, Kima HE (2004) Appl Phys Lett 85:4621

    Article  CAS  ADS  Google Scholar 

  12. Choi JJ, Park GT, Park CS, Lee JW, Kim HE (2004) J Mater Res 19:3671

    Article  CAS  ADS  Google Scholar 

  13. Doi H, Atsuki T, Soyama N, Sasaki G, Yonezawa T, Ogi K (1994) Jpn J Appl Phys Part 1 3:5159

    Article  ADS  Google Scholar 

  14. Chen SY, Chen IW (1998) J Am Ceram Soc 81:97

    Article  CAS  Google Scholar 

  15. Gong W, Li JF, Chu X, Li L (2004) J Eur Ceram Soc 24:2977

    Article  CAS  Google Scholar 

  16. Reaney IM, Brooks KG, Klissurska R, Pawlaczyk C, Setter N (1994) J Am Ceram Soc 77:1209

    Article  CAS  Google Scholar 

  17. Aoki K, Fukuda Y, Nishimura A (1993) Jpn J Appl Phys Part 1 32:4147

    Article  CAS  Google Scholar 

  18. Hahn BD, Park DS, Choi JJ, Yoon WH, Ryu J, Kim DY (2008) J Mater Res 23:226

    Article  CAS  ADS  Google Scholar 

  19. Kumar CVRV, Pascual R, Sayer M (1992) J Appl Phys 71:864

    Article  CAS  ADS  Google Scholar 

  20. Lee JS, Joo SK (2002) J Appl Phys 92:2658

    Article  CAS  ADS  Google Scholar 

  21. Liu Y, Phule PP (1996) J Am Ceram Soc 79:495

    Article  CAS  Google Scholar 

  22. Chen SY, Chen IW (1994) J Am Ceram Soc 77:2332

    Article  CAS  Google Scholar 

  23. Schneller T, Kohlstedt H, Petraru A, Waser R, Guo J, Denlinger J, Learmonth T, Glans P-A, Smith KE (2008) J Sol-Gel Sci Technol 48:239

    Article  CAS  Google Scholar 

  24. Schneller T, Waser R (2007) J Sol-Gel Sci Technol 42:337

    Article  CAS  Google Scholar 

  25. Huang Z, Zhang Q, Whatmore RW (1998) J Mater Sci Lett 14:1157

    Article  Google Scholar 

  26. Wu A, Vilarinho PM, Reaney I, Salvado IMM (2003) Chem Mater 15:1147

    Article  CAS  Google Scholar 

  27. Chen SY, Chen IW (1994) J Am Ceram Soc 77:2337

    Article  CAS  Google Scholar 

  28. Polli AD, Lange FF, Levi CG (2000) J Am Ceram Soc 83:873

    Article  CAS  Google Scholar 

  29. Subramanian MA, Aravamudan G, Rao GVS (1983) Prog Solid State Chem 15:55

    Article  CAS  Google Scholar 

  30. Muralt P (2006) J Appl Phys 100:051605-1

    Article  ADS  Google Scholar 

  31. Schwartz RW (1997) Chem Mater 9:2325

    Article  CAS  Google Scholar 

  32. Kartawidjaja FC, Sim CH, Wang J (2007) J Appl Phys 102:124102-1

    Article  ADS  Google Scholar 

  33. Kartawidjaja FC, Zhou ZH, Wang J (2006) J Electroceram 16:425

    Article  CAS  Google Scholar 

  34. Anbusathaiah V, Kan D, Kartawidjaja FC, Mahjoub RM, Arredondo MA, Wicks S, Takeuchi I, Wang J, Nagarajan V (2009) Adv Mater 21:3497

    Article  CAS  Google Scholar 

  35. Wilkinson AP, Speck JS, Cheetham AK (1994) Chem Mater 6:750

    Article  CAS  Google Scholar 

  36. Genechten DV, Vanhoyland G, Haen JD, Johnson J, Wouters DJ, Bael MKV, Rul HVd, Poucke LCV (2004) Thin Solid Films 467:104

    Article  Google Scholar 

  37. Thomas R, Mochizuki S, Mihara T, Ishida T (2001) Jpn J Appl Phys Part 1 40:5511

    Article  CAS  Google Scholar 

  38. Atsuki T, Soyama N, Sasaki G, Yonezawa T, Ogi K, Sameshima K, Hoshiba K, Nakao Y, Kamisawa A (1994) Jpn J Appl Phys Part 1 33:5196

    Article  CAS  Google Scholar 

  39. Taguchi I, Pignolet A, Wang L, Proctor M, Levy F, Schmid PE (1993) J Appl Phys 74:6625

    Article  CAS  ADS  Google Scholar 

  40. Yi H, Kim MG, Park J, Jang HM (2004) J Appl Phys 96:5110

    Article  CAS  ADS  Google Scholar 

  41. Meng JF, Katiyar RS, Zou GT, Wang XH (1997) Phys Stat Sol (a) 164:851

    Article  CAS  ADS  Google Scholar 

  42. Burns G, Scott BA (1970) Phys Rev Lett 25:1191

    Article  CAS  ADS  Google Scholar 

  43. Agrawal DC, Majumder SB, Mohapatra YN, Sathaiah S, Bist HD, Katiyar RS, Prado EC, Reynes A (1993) J Raman Spectrosc 24:459

    Article  CAS  ADS  Google Scholar 

  44. Zhang H, Leppavuori S, Karjalainen P (1995) J Appl Phys 77:2691

    Article  CAS  ADS  Google Scholar 

  45. Park CS, Lee JW, Park GT, Kim HE, Choi JJ (2007) J Mater Res 22:1367

    Article  CAS  ADS  Google Scholar 

  46. Sugiyama O, Kondo Y, Suzuki H, Kaneko S (2003) J Sol-Gel Sci Technol 26:749

    Article  CAS  Google Scholar 

  47. Wakiya N, Kuroyanagi K, Xuan Y, Shinozaki K, Mizutani N (2000) Thin Solid Films 372:156

    Article  CAS  ADS  Google Scholar 

  48. Zhu TJ, Lu L (2004) J Appl Phys 95:241

    Article  CAS  ADS  Google Scholar 

  49. Khaenamkaew P, Muensit S, Bdikin IK, Kholkin AL (2007) Mater Chem Phys 102:159

    Article  CAS  Google Scholar 

  50. Escote MT, Pontes FM, Leite ER, Longo E, Jardim RF, Pizani PZ (2004) J Appl Phys 96:2186

    Article  CAS  ADS  Google Scholar 

  51. Huang Z, Zhang Q, Whatmore RW (1999) J Appl Phys 85:7355

    Article  CAS  ADS  Google Scholar 

  52. Wu A, Vilarinho PM, Reaney IM, Salvado IMM, Baptista JL (2000) Integr Ferroelectr 31:261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is based upon work supported by the Science and Engineering Research Council–A*Star, Singapore. Research at UNSW was supported by an Australian Research Council Discovery Project and UNSW Anthony Mason travel grant. The authors would like to thank Dr. Debbie Seng Hwee Leng, Mr. Tan Chee King, and Dr. Gregory Goh for their time and efforts on SIMS measurements, Ms. June Ong Lay Ting for her assistance in XPS measurements, and Dr. X. J. Lou for his time in discussion. The authors would like to acknowledge the support of National University of Singapore in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartawidjaja, F.C., Varatharajan, A., Valanoor, N. et al. Microstructure and texture development in single layered and heterolayered PZT thin films. J Mater Sci 45, 6187–6199 (2010). https://doi.org/10.1007/s10853-010-4712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4712-0

Keywords

Navigation