Skip to main content
Log in

On the rate-controlling mechanism during the plastic deformation of nanocrystalline Cu

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Data in the literature on the effect of grain size from micrometers to nanometers on the flow stress, dislocation density, apparent activation volume and strain rate sensitivity parameters for Cu are analyzed to determine the rate-controlling mechanism. Accord occurs for the intersection of dislocations over the entire grain size range from 10 nm to 150 μm. The dislocation density and its structure and the related Friedel factor are important parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Conrad H, Jung K (2005) Mater Sci Eng A406:78

    CAS  Google Scholar 

  2. Shen YF, Lu L, Lu Q, Jin A, Lu K (2005) Scripta Mater 52:989

    Article  CAS  Google Scholar 

  3. Lu L, Chen X, Huang, Lu K (2009) Science 323:607

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Armstrong RW (1970) In: Herman H (ed) Adv Mater Res. Wiley, New York, p 101

  5. Armstrong RW (1972) In: Vasu KI, Raman K, Sastry D, Prasad Y (eds) Defect structures in solids. Indian Institute of Science, Bangalore, p 306

    Google Scholar 

  6. Armstrong RW, Rodriguez P (2006) Phil Mag 86:5787

    Article  CAS  ADS  Google Scholar 

  7. Conrad H (2003) Mater Sci Eng A341:216

    CAS  Google Scholar 

  8. Conrad H (2004) Metall Mater Trans A 35A:2618

    Google Scholar 

  9. Conrad H (2007) Nanotechnology 18:325701

    Article  Google Scholar 

  10. Embury JD, Lahaie DJ (1993) In: Natasi M et al (eds) Mechanical properties and deformation behavior of materials having ultrafine microstructure. Kluwer-Academic, Dordrech, p 287

    Google Scholar 

  11. Conrad H, Yang Di (2002) J Electron Mater 33:304

    Article  ADS  Google Scholar 

  12. Conrad H, Jung K (2005) Scripta Mater 53:581

    Article  CAS  Google Scholar 

  13. Conrad H, Jung K (2006) J Mech Behav Mater 17:337

    CAS  Google Scholar 

  14. Conrad H (1965) In: Zackay VF (ed) High-strength materials. John Wiley, New York, p 436

    Google Scholar 

  15. Conrad H, Cao W-d (1996) In: Arsenault RJ et al (eds) The Johannes Weertman Symposium. TMS, Warrendale, PA, p 321

  16. Conrad H, Meester B, Yin C, Doner M (1975) In: Mukerjee AK, Li JCM (eds) Rate processes in plastic deformation of materials. ASM Materials Park, OH, p 175

    Google Scholar 

  17. Doner M, Cheng H, Conrad H (1974) J Mech Phys Solids 22:555

    Article  CAS  ADS  Google Scholar 

  18. Li JCM (1963) Trans TMS AIME 227:239

    CAS  Google Scholar 

  19. Conrad H (1963) In: Thomas G, Washburn J (eds) Electron microscopy and strength of crystals. Interscience Publication, New York, p 299

  20. Conrad H (1970) In: Burke J, Reed MG, Weiss V (eds) Ultrafine-grain metals. Syracuse University Press, New York, p 213

  21. Ashby MF (1970) Philos Mag 21:399

    Article  CAS  ADS  Google Scholar 

  22. Gordon P (1955) Trans AIME 203:1043

    Google Scholar 

  23. Clareborough LM, Hargreaves ME, Lorretto MH (1958) Acta Metall 6:725

    Article  Google Scholar 

  24. Bailey JE (1963) Philos Mag 8:223

    Article  CAS  ADS  Google Scholar 

  25. Staker MR, Holt DL (1972) Acta Metall 20:569

    Article  CAS  Google Scholar 

  26. Hanson N, Ralph B (1982) Acta Metall 30:411

    Article  Google Scholar 

  27. Hommel M, Kraft O (2001) Acta Mater 49:3935

    Article  CAS  Google Scholar 

  28. Ungár T, Oth S, Sanders P, Borbely A, Weertman JR (1998) Acta Mater 446:3693

    Article  Google Scholar 

  29. Zheng Y, Tao N, Lu K (2008) Acta Mater 56:2429

    Article  Google Scholar 

  30. Balogh L, Ungár T, Zhao Y, Zhu Y, Horita Z, Yu C, Langdon T (2008) Acta Mater 56:809

    Article  CAS  Google Scholar 

  31. Brandstetter S, Derlet PM, Van Petegem S, Van Swygenhoven H (2008) Acta Mater 56:165

    Article  CAS  Google Scholar 

  32. Li YS, Zhang Y, Tao N, Lu K (2009) Acta Mater 57:761

    Article  CAS  Google Scholar 

  33. Carreker RP, Hibbard WR (1935) Acta Mater 1:656

    Google Scholar 

  34. Lu L, Dao M, Zhu T, Li J (2009) Scripta Mater 60:1062

    Article  CAS  Google Scholar 

  35. Friedel J (1967) Dislocations. Pergamon Press, New York

    Google Scholar 

  36. Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York

    Google Scholar 

  37. Hull D, Bacon O (1984) Introduction to dislocations, 3rd edn. Pergamon Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Conrad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, H., Yang, D. On the rate-controlling mechanism during the plastic deformation of nanocrystalline Cu. J Mater Sci 45, 6166–6169 (2010). https://doi.org/10.1007/s10853-010-4703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4703-1

Keywords

Navigation