Skip to main content
Log in

Preparation of a hyperbranched polycarbosilane precursor to SiC ceramics following an efficient room-temperature cross-linking process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Room-temperature cross-linking of a hyperbranched polycarbosilane (HBPCS) with divinylbenzene (DVB) in the presence of the cyclohexanone peroxide–cobaltous naphthenate (CHP–CN) initiator system was studied. According to the Fourier transform infrared spectroscopy (FT-IR) and 1H nuclear magnetic resonance (1H NMR) results, the cross-linking reaction occurred via the vinyl polymerization. The GPC analysis confirmed the molecular weight of the cross-linked HBPCS significantly increased. Thermal behaviors of cross-linked HBPCS and original HBPCS were investigated by thermal gravimetric analysis-differential thermal analysis (TGA–DTA). The TGA results indicated that the ceramic yield of HBPCS remarkably increased by the cross-linking treatment. For the HBPCS/10 wt% DVB system, the maximum of reaction degree of HBPCS was obtained, which might be responsible for the highest ceramic yield of 70.1 wt% at 1000 °C. However, the ceramic yield of the non-crosslinked HBPCS was only 45 wt% at 1000 °C. The evolution of crystal structure of SiC as a function of pyrolysis temperature was traced by means of X-ray diffraction (XRD) and FT-IR. With the pyrolysis temperature increasing, the β-SiC peaks became sharper and the grain size also grew larger. As the DVB content increased, the intensity of β-SiC peaks significantly reduced, indicating smaller β-SiC grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kita K, Narisawa M, Nakahira A et al (2010) J Mater Sci 45(1):139. doi:10.1007/s10853-009-3905-x

    Article  CAS  ADS  Google Scholar 

  2. Interrante LV, Shen QH (2009) In: Dvornic PR, Owen MJ (eds) Silicon-containing dendritic polymers, chap 12. Springer, Dordrecht

  3. Whitmarsh CK, Interrante LV (1991) Organometallics 10:1336

    Article  CAS  Google Scholar 

  4. Rushkin IL, Shen Q, Lehman SE et al (1997) Macromolecules 30:3141

    Article  CAS  ADS  Google Scholar 

  5. Interrante LV, Moraes K, MacDonald L et al (2002) Ceram Trans 144:125

    CAS  Google Scholar 

  6. Kotani M, Kato Y, Kohyama A et al (2003) J Ceram Soc Jpn 111:300

    Article  CAS  Google Scholar 

  7. Zheng J, Akinc M (2001) J Am Ceram Soc 84:2479

    Article  CAS  Google Scholar 

  8. Huang TH, Yu ZJ, He XM et al (2007) Chin Chem Lett 18:754

    Article  CAS  Google Scholar 

  9. Huang MH, Fang YH, Li R et al (2009) J Appl Polym Sci 113:1611

    Article  CAS  Google Scholar 

  10. Li HB, Zhang LT, Cheng LF et al (2008) J Mater Sci 43:2806. doi:10.1007/s10853-008-2539-8

    Article  CAS  ADS  Google Scholar 

  11. Li HB, Zhang LT, Cheng LF et al (2008) J Eur Ceram Soc 28:887

    Article  CAS  Google Scholar 

  12. Li HB, Zhang LT, Cheng LF et al (2009) J Mater Sci 44:721. doi:10.1007/s10853-008-3176-y

    Article  CAS  ADS  Google Scholar 

  13. Bouillon E, Pailler R, Naslain R et al (1991) Chem Mater 3:356

    Article  CAS  Google Scholar 

  14. Froehling PE (1993) J Inorg Organomet Polym 3:251

    Article  CAS  Google Scholar 

  15. Interrante LV, Shen QH (2000) In: Jones RG et al (eds) Silicon-containing polymers. Kluwer Academic Publishers, Dordrecht

  16. Liu Q, Wu HJ, Lewis R et al (1999) Chem Mater 11:2038

    Article  CAS  Google Scholar 

  17. Yu ZJ, Huang MH, Li R et al (2009) J Chin Ceram Soc 37:105

    Google Scholar 

  18. George SL, Geoffrey P (1969) I&EC Prod Res Dev 8:124

    Article  Google Scholar 

  19. Maddocks AR, Hook JM, Stender H et al (2008) J Mater Sci 43:2666. doi:10.1007/s10853-008-2488-2

    Article  CAS  ADS  Google Scholar 

  20. Jian K, Chen ZH, Ma QS et al (2007) Ceram Int 33:905

    Article  CAS  Google Scholar 

  21. Jian K, Chen ZH, Ma QS et al (2007) Ceram Int 33:73

    Article  CAS  Google Scholar 

  22. Jian K, Chen ZH, Ma QS et al (2005) Mater Sci Eng A 408:330

    Article  Google Scholar 

  23. Shriver DF, Drezdzon MA (eds) (1986) The manipulation of air-sensitive compounds. Wiley, New York

    Google Scholar 

  24. Kumagawa K, Yamaoka H, Shibuya M et al (1998) Ceram Eng Sci Proc 19:65

    Article  CAS  Google Scholar 

  25. Zhou MH, Kim SH, Park JG (2000) Polym Bull 44:17

    Article  CAS  Google Scholar 

  26. Ma R, Song ZY, Hou YB et al (2009) J Macromol Sci A 46:193

    Article  CAS  Google Scholar 

  27. Dean JA (ed) (1991) Lange’s chemistry handbook, 13th edn. Science Press, Beijing

    Google Scholar 

  28. Meng GR, Zhao L, Liang GZ et al (2001) Thermoset Resin 16: 34 (in Chinese)

  29. Michael B, Anton LG (eds) (2001) In: Macromolecular symposia. Wiley-VCH, Berlin

  30. Yu ZJ, Huang MH, Fang YH et al (2010) React Funct Polym 70:334

    Article  CAS  Google Scholar 

  31. Fang YH, Huang MH, Yu ZJ et al (2008) J Am Ceram Soc 91:3298

    Article  CAS  Google Scholar 

  32. Moraes K, Vosburg J, Wark D et al (2004) Chem Mater 16:125

    Article  CAS  Google Scholar 

  33. Tang M, Yu ZJ, Yu YX et al (2009) J Mater Sci 44:1633. doi:10.1007/s10853-009-3246-9

    Article  CAS  MathSciNet  ADS  Google Scholar 

  34. Ogawa I (1997) Carbon 35:1846

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Nos. 50802079, 20925208, and 50532010) and Natural Science Foundation of Fujian Province of China (2008J0165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Zhan, J., Huang, M. et al. Preparation of a hyperbranched polycarbosilane precursor to SiC ceramics following an efficient room-temperature cross-linking process. J Mater Sci 45, 6151–6158 (2010). https://doi.org/10.1007/s10853-010-4701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4701-3

Keywords

Navigation