Skip to main content
Log in

Synergy in carbon black filled natural rubber nanocomposites. Part II: Abrasion and viscoelasticity in tire like applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Synergistic effect of carbon black (CB) in presence of nanofillers (nanoclay and nanofiber) on mechanical and dynamic mechanical properties was discussed in light of electrostatic interactions and the concomitant microstructural developments, in Part I of this series. These interactions enhanced filler dispersion and ensured efficient stress transfer from the matrix resulting in improvement in properties, undiminished even by continual increase in CB loading. In this part, the micromechanical processes that influence wear behavior have been addressed conjointly with dynamic mechanical properties. Tribological characteristics were studied by sliding rubber wheel samples against a steel blade, in a specially designed abrader, in both transient and steady state conditions. Wear loss was reduced in the dual filler nanocomposites by 33% (over the CB microcomposite) in less stringent and 75% under severe wear conditions. These CB filled nanocomposites also illustrated lowering of coefficient of friction and temperature build-up. This was attributed to efficient heat dissipation due to the formation of a unique microstructural architecture by the participating fillers and also an adhering transfer film on the abraders’ counterface. From viscoelastic measurements, the CB filled nanocomposites were also found to lie in the high performance window of good wet skid and low rolling resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dasari A, Yu Z-Z, Mai Y-W, Hu GH, Varlet JL (2005) Compos Sci Technol 65:2314

    Article  CAS  Google Scholar 

  2. Galetz MC, Blass T, Ruckdaschel H, Sandler JKW, Altstadt V, Glatzel U (2007) J Appl Polym Sci 104:4173

    Article  CAS  Google Scholar 

  3. Karger-Kocsis J, Felhos D, Thomann R (2008) J Appl Polym Sci 108:724

    Article  CAS  Google Scholar 

  4. Song J, Ehresntein GW (1993) In: Friedrich K (ed) Advances in composite tribology. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  5. Dasari A, Yu Z-Z, Mai Y-W (2009) Mater Sci Eng R 63:31

    Article  Google Scholar 

  6. Donnet JB, Voet A (1976) Carbon black: physics, chemistry, and elastomer reinforcement. Dekker, New York

    Google Scholar 

  7. Maiti M, Bhattacharya M, Bhowmick AK (2008) Rubber Chem Technol 81:384

    CAS  Google Scholar 

  8. Chang L, Zhang Z, Ye L, Friedrich K (2007) Tribol Int 40:1170

    Article  CAS  Google Scholar 

  9. Shi YJ, Feng X, Wang HY, Liu C, Lu XH (2007) Tribol Int 40:1195

    Article  CAS  Google Scholar 

  10. Wang QH, Xu JF, Shen WC, Liu WM (1996) Wear 196:82

    Article  CAS  Google Scholar 

  11. Li F, Hu K-A, Li J-L, Zhao B-Y (2001) Wear 249:877

    Article  CAS  Google Scholar 

  12. Schadler LS, Laul KO, Smith RW, Petrovicova E (1997) J Therm Spray Technol 6:475

    Article  CAS  ADS  Google Scholar 

  13. Bahadur S, Kapoor A (1992) Wear 155:49

    Article  CAS  Google Scholar 

  14. Cai H, Yan FY, Xue QJ (2004) Mater Sci Eng A 364:94

    Article  Google Scholar 

  15. Wang C, Dong B, Gao G-Y, Xu M-W, Li H-L (2008) Mater Sci Eng A 478:314

    Article  Google Scholar 

  16. Zoo YS, An JW, Lim DP, Lim DS (2004) Tribol Lett 16:305

    Article  CAS  Google Scholar 

  17. Ng CB, Schadler LS, Siegel RW (1999) Nanostruct Mater 12:507

    Article  Google Scholar 

  18. Wetzel B, Haupert F, Friedrich K, Zhang MQ, Rong MZ (2002) Polym Eng Sci 42:1919

    Article  CAS  Google Scholar 

  19. Shi G, Zhang MQ, Rong MZ, Wetzel B, Friedrich K (2003) Wear 254:784

    Article  CAS  Google Scholar 

  20. Gatos KG, Kameo K, Karger-Kocsis J (2007) Express Polym Lett 1:27

    Article  CAS  Google Scholar 

  21. Xu D, Karger-Kocsis J, Major Z, Thomann R (2009) J Appl Polym Sci 112:1461

    Article  CAS  Google Scholar 

  22. Gent AN, Lai S-M, Nah C, Wang CHI (1994) Rubber Chem Technol 67:610

    CAS  Google Scholar 

  23. Maeda K, Bismarck A, Briscoe BJ (2005) Wear 259:651

    Article  CAS  Google Scholar 

  24. Nayek S, Bhowmick AK, Pal SK, Chandra AK (2005) Rubber ChemTechnol 78:705

    CAS  Google Scholar 

  25. Bhattacharya M, Bhowmick AK (2010) Wear 269:152

    Article  CAS  Google Scholar 

  26. Fukahori Y, Yamazaki H (1994) Wear 171:195

    Article  CAS  Google Scholar 

  27. Gent AN, Pulford CTR (1983) J Appl Polym Sci 28:943

    Article  CAS  Google Scholar 

  28. Thavamani P, Khastgir D, Bhowmick AK (1993) J Mater Sci 28:6318. doi:10.1007/BF01352190

    Article  CAS  ADS  Google Scholar 

  29. Zhang SW (1984) Rubber Chem Technol 57:755

    CAS  Google Scholar 

  30. Bonfield W, Edwards BC, Markham AJ, White JR (1976) Wear 37:113

    Article  Google Scholar 

  31. Kvandea I, Øyeb G, Hammera N, Rønninga M, Raaenc S, Holmena A, Sjo¨blomb J, Chen D (2008) Carbon 46:759

    Article  Google Scholar 

  32. Gates WP (2004) Appl Clay Sci 27:1

    Article  CAS  ADS  Google Scholar 

  33. Lin JJ, Chu CC, Chiang ML, Tsai WC (2006) J Phys Chem B110(37):18115

    Google Scholar 

  34. Brochard-Wyart F, de Gennes PG (2000) Eur Phys J E 1:93

    Google Scholar 

  35. Flores F, Graebling D, Allal A, Guerret-Pi′ecourt C (2007) J Phys D Appl Phys 40:2911

    Article  CAS  ADS  Google Scholar 

  36. Konishi Y, Cakmak M (2005) Polymer 46:4811

    CAS  Google Scholar 

  37. Etika KC, Liu L, Hess LA, Grunlan JC (2009) Carbon 47:3128

    Article  CAS  Google Scholar 

  38. Feller JF, Bruzaud S, Grohens Y (2004) Mater Lett 58:739

    Article  CAS  Google Scholar 

  39. Gent AN (2005) In: Mark JE, Erman B, Eirich FR (eds) The science and technology of rubbers, 3rd edn. Elsevier Academic Press, San Diego, pp 455

    Google Scholar 

  40. Schallamach A (1954) Proc Phys Soc B67:883

    ADS  Google Scholar 

  41. Champ DH, Southern E, Thomas AG (1974) Am Chem Soc Div Org Coat Plast Paper Prepr 34:237

    CAS  Google Scholar 

  42. Moore D (1980) Wear 61:273

    Article  Google Scholar 

  43. Gatti LF (2005) US Patent no. US 6852,785B1, Assigned to Dunlop Tire Corp., NY

  44. Wang M-J, Morris MD (2008) In: Bhowmick AK (ed) Current topics in elastomer research. CRC Press, New York

    Google Scholar 

  45. Yuichi S, Susumu W, Sumio T (1992) European Patent no. EP0500338 (A1), Assigned to Sumitomo Rubber Ind

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, M., Bhowmick, A.K. Synergy in carbon black filled natural rubber nanocomposites. Part II: Abrasion and viscoelasticity in tire like applications. J Mater Sci 45, 6139–6150 (2010). https://doi.org/10.1007/s10853-010-4700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4700-4

Keywords

Navigation