Skip to main content
Log in

In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Currently available engineering magnesium alloys have several critical concerns if they are about to be used as biomaterials, particularly the concern about the toxicity of the common alloying elements such as aluminum and rare earth (RE). There is an increasing demand to develop new magnesium alloys that do not contain any toxic elements. It is also desirable, yet challenging, to develop such a material that has a controllable degradation rate in the human fluid environment. This paper presents mechanical properties, degradation, and in vitro cell attachment of a newly developed Mg–6Zn magnesium alloy. The alloy demonstrated comparable mechanical properties with typical engineering magnesium alloys. However, the bare alloy did not show an acceptable corrosion (degradation) rate. Application of a polymeric PLGA or poly(lactide-co-glycolide) coating significantly decreased the degradation rate. The results obtained from cell attachment experiments indicated that the mouse osteoblast-like MC3T3 cells could develop enhanced confluence on and interactions with the coated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Williams D (2006) Med Device Technol 17:9

    PubMed  Google Scholar 

  2. Mani G, Feldman MD, Patel D, Agrawal CM (2007) Biomaterials 28:1689

    Article  CAS  PubMed  Google Scholar 

  3. Peuster M et al (2006) Biomaterials 27:4955

    Article  CAS  PubMed  Google Scholar 

  4. Mueller PP, May T, Perz A, Hauser H, Peuster M (2006) Biomaterials 27:2193

    Article  CAS  PubMed  Google Scholar 

  5. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Heart 89:651

    Article  CAS  PubMed  Google Scholar 

  6. Song G, Song S (2007) Adv Eng Mater 9:298

    Article  CAS  Google Scholar 

  7. Witte F, Fischer J, Nellesen J, Crostack H, Kaese V, Pischd A (2006) Biomaterials 27:1013

    Article  CAS  PubMed  Google Scholar 

  8. Witte F, Kaese V, Switzer H, Meyer-Lindenberg A, Wirth CJ, Windhag H (2005) Biomaterials 26:3557

    Article  CAS  PubMed  Google Scholar 

  9. Peuster M, Fink C, Schnakenburg CV (2003) Biomaterials 24:4057

    Article  CAS  PubMed  Google Scholar 

  10. Zreiqat H, Valenzuela SM, Nissan BB, Roest R, Knabe C, Radlanski RJ, Renz H, Evans PJ (2005) Biomaterials 26:7579

    Article  CAS  PubMed  Google Scholar 

  11. Saris NL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Clin Chim Acta 294:1

    Article  CAS  PubMed  Google Scholar 

  12. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27:1728

    Article  CAS  PubMed  Google Scholar 

  13. Zeng R, Dietzel W, Witte F, Hort N, Blawert C (2008) Adv Eng Mater 10:B3

    Article  CAS  Google Scholar 

  14. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Llsley C, Bose D, Koolen J, Luscher TF, Weissman N, Waksman R (2007) Lancet 369:1869

    Google Scholar 

  15. Hotz K, Murphy A (2006) Drug-eluting and absorbable stents push interventional frontiers. The American College of Cardiology. http://eurekalert.org/pub_release/2006-03/acoc-daa031206.php. Accessed 10 June 2010

  16. Song G (2007) Corros Sci 49:1696

    Article  CAS  Google Scholar 

  17. El-Rahman SSA (2003) Pharmacol Res 47:189

    Article  CAS  PubMed  Google Scholar 

  18. Ku C-H, Pioletti DP, Browne M, Gregson PJ (2002) Biomaterials 23(6):1447

    Article  CAS  PubMed  Google Scholar 

  19. Yumiko N, Yukari T, Yasuhide T, Tadashi S, Yoshio I (1997) Fundam Appl Toxicol 37:106

    Article  Google Scholar 

  20. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) Biomaterials 30:484

    Article  CAS  PubMed  Google Scholar 

  21. Yuen CK, Ip WY (2010) Acta Biomater 6:1808

    Article  CAS  PubMed  Google Scholar 

  22. Zberg B, Uggowitzer PJ, Loffler JF (2009) Nat Mater 8:887

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Göpferich A (1996) Biomaterials 17:103

    Article  PubMed  Google Scholar 

  24. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Biomaterials 17:93

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, Bian Y (2010) Acta Biomater 6:626

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Gu X, Lou S, Zheng Y (2008) Biomaterials 29:1329

    Article  CAS  PubMed  Google Scholar 

  27. Zhang E, Yin D, Xu L, Yang L, Yang K (2009) Mater Sci Eng C 29:987

    Article  CAS  Google Scholar 

  28. Song G, Atrens A, Stjohn D, Nairn J, Li Y (1997) Corros Sci 39(5):855

    Article  CAS  Google Scholar 

  29. Hara N, Kobayashi Y, Kagaya D, Akao N (2007) Corros Sci 49:166

    Article  CAS  Google Scholar 

  30. Song G, Atrens A, Wu X, Zhang B (1998) Corros Sci 40:1769

    Article  CAS  Google Scholar 

  31. Bonora PL, Deflorian F, Fedrizzi L (1996) Electrochim Acta 41:1073

    Article  CAS  Google Scholar 

  32. Yfantis A, Paloumpa I, Schmeiber D, Yfantis DY (2002) Surf Coat Technol 151–152:400

    Article  Google Scholar 

  33. Hanzi AC, Gunde P, Schinhammer M, Uggowitzer PJ (2009) Acta Biomater 5:162

    Article  CAS  PubMed  Google Scholar 

  34. Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD (2005) Biomaterials 26:5960

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 30772182 and No. 30901422), the Shanghai Jiao Tong University Interdiscipline Research Grant (No. YG2009MS53) and the “863” High-tech Programs of China (No. 2009AA03Z424). The useful and constructive comments from the reviewers are acknowledged. PC would also like to acknowledge the financial support from the Foundation of Research Science and Technology (FRST), New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Cao or X. N. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.N., Cao, P., Zhang, X.N. et al. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J Mater Sci 45, 6038–6045 (2010). https://doi.org/10.1007/s10853-010-4688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4688-9

Keywords

Navigation