Skip to main content
Log in

The presence of fivefold germanium as a possible transitional phase in the iron–lead–germanate glass system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glasses in the system xFe2O3·(100 − x)[7GeO2·3PbO] with 0 ≤ x ≤ 60 mol% have been prepared from melt quenching method. In this article, we investigated changes in germanium coordination number in iron–lead–germanate glasses through molar volume analysis, measurements of densities, investigations of FTIR, and UV–VIS spectroscopy. The observations present in these mechanisms show that the lead ions have an affinity pronounced toward [GeO5] and [FeO4] structural units with non-bridging oxygens. The excess of oxygen can be supported into the glass network by the formation of [FeO6] structural units and the apparition of the germanate anomaly. At higher content of iron (III) oxide, the anomaly behavior of the germanium is due to the formations of [FeO6] structural units. Our results show that the presence of fivefold germanium as a possible transitional phase from four to sixfold germanium it is necessary for the formation of the [FeO6] structural units and the apparition of the Fe2O3 crystalline phase. Pb+2 ions with 6s2 configuration show strong absorption in the ultraviolet due to parity allowed s2-sp transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shepherd DP, Brick DJB, Wang J, Tropper AC, Hanna DC, Kakarantzas G, Townsend PD (1994) Opt Lett 19:954

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Lezal D, Pedlikova J, Horak J (1996) J Non-Cryst Solids 196:178

    Article  CAS  ADS  Google Scholar 

  3. Rada S, Culea M, Neumann M, Culea E (2008) Chem Phys Lett 460:196

    Article  CAS  ADS  Google Scholar 

  4. Meera B, Sood A, Chandrabhas N, Ramakrishna J (1990) J Non-Cryst Solids 126:224

    Article  CAS  ADS  Google Scholar 

  5. Pisarski W, Goryczka T, Wodecka-Dus B, Plonska M, Pisarska J (2005) Mater Sci Eng B 122:94

    Article  Google Scholar 

  6. El-Egili K, Doweidar H, Moustafa YM, Abbas I (2003) Physica B 339:237

    Article  CAS  ADS  Google Scholar 

  7. Doweidar H (1996) J Non-Cryst Solids 194:155

    Google Scholar 

  8. Shaw RR (1971) J Am Ceram Soc 54:170

    Article  CAS  Google Scholar 

  9. Kamitsos EI, Yianopoulos YD, Karakassides MA, Chryssikos GD, Jain H (1996) J Phys Chem 100:11755

    Article  CAS  Google Scholar 

  10. Murthy MK, Ip J (1964) Nature 201:285

    Article  CAS  ADS  Google Scholar 

  11. Henderson GS (2007) J Non-Cryst Solids 353:1695

    Article  CAS  ADS  Google Scholar 

  12. Henderson GS, Fleet ME (1991) J Non-Cryst Solids 134:259

    Article  CAS  ADS  Google Scholar 

  13. Henderson GS, Wang HM (2002) Eur J Miner 14:733

    Article  CAS  Google Scholar 

  14. Hussin R, Dupree R, Holland D (1999) J Non-Cryst Solids 246:159

    Article  CAS  ADS  Google Scholar 

  15. Hoppe U, Kranold R, Weber HJ, Hannon AC (1999) J Non-Cryst Solids 248:1

    Article  CAS  ADS  Google Scholar 

  16. Mortier M, Patriarche G (2000) J Mater Sci 35(19):4849. doi:10.1023/A:1017512232431

    Article  CAS  Google Scholar 

  17. Yang Z, Jiang Z, Liu Y, Deng Z (2006) J Mater Sci 41(18):6174. doi:10.1007/s10853-006-0159-8

    Article  CAS  ADS  Google Scholar 

  18. Yang Z, Xu S, Dai S, Yang J, Hu L, Jiang Z (2004) J Mater Sci 39(11):3641. doi:10.1023/B:JMSC.0000030717.85894.69

    Article  CAS  ADS  Google Scholar 

  19. Mandal S, Hazra S, Ghosh A (1994) J Mater Sci Lett 13:1054

    Article  CAS  Google Scholar 

  20. Hazra S, Ghosh A (1995) J Mater Res 10(9):2374

    Article  CAS  ADS  Google Scholar 

  21. Rada S, Ristoiu T, Rada M, Coroiu I, Maties V, Culea E (2010) Mater Res Bull 45:69

    Article  CAS  Google Scholar 

  22. Rada S, Pascuta P, Culea M, Maties V, Rada M, Barlea M, Culea E (2009) J Mol Struct 924–926:89

    Article  Google Scholar 

  23. Rada M, Maties V, Culea M, Rada S, Culea E (2010) Spectrochim Acta A 75:507

    Article  CAS  ADS  Google Scholar 

  24. Rada M, Culea E, Rada S, Maties V, Pascuta P (2010) J Mater Sci 45:1487. doi:10.1007/s10853-009-4109-0

    Article  CAS  ADS  Google Scholar 

  25. Shivachev BL, Petrov T, Yoneda H, Titorenkova R, Mihailova B (2009) Scr Mater 61(5):493

    Article  CAS  Google Scholar 

  26. Zhang Z (1993) Phys Chem Glasses 34:95

    Google Scholar 

  27. Ehrt D (2004) J Non-Cryst Solids 348:22

    Article  CAS  ADS  Google Scholar 

  28. Kurkjian CR, Sigety EA (1968) Phys Chem Glasses 9:73

    CAS  Google Scholar 

  29. Montenero A, Friggeri M, Giori DC, Belkhiria N, Pye LD (1986) J Non-Cryst Solids 84:45

    Article  CAS  ADS  Google Scholar 

  30. Kurkjian CR (1970) J Non-Cryst Solids 3:157

    Article  CAS  ADS  Google Scholar 

  31. Park W, Chen H (1982) Phys Chem Glasses 23:107

    CAS  Google Scholar 

  32. Edwards RJ, Paul A, Douglas RW (1972) Phys Chem Glasses 13:137

    CAS  Google Scholar 

  33. Creux S (1997) In: Proceedings on Fundamentals of Glass Science and Technology, p 41

  34. Steele FN, Douglas RW (1965) Phys Chem Glasses 6:246

    CAS  Google Scholar 

  35. Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University, Cambridge, p 57

    Book  Google Scholar 

  36. Fayon F, Bessada C, Coutures JP, Massiot D (1999) Inorg Chem 38:5212

    Article  CAS  Google Scholar 

  37. Abid M, Et-labirou M, Taibi M (2003) Mater Sci Eng B 97:20

    Article  Google Scholar 

  38. Srinivasa Rao N, Purnima M, Bale S, Siva Kumar K, Rahman S (2006) Bull Mater Sci 29(4):365

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Ministry of Education and Research of Romania-National University Research Council (CNCSIS, PN II-IDEI 183/2008, contract number 476/2009) is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rada, S., Chelcea, R. & Culea, E. The presence of fivefold germanium as a possible transitional phase in the iron–lead–germanate glass system. J Mater Sci 45, 6025–6029 (2010). https://doi.org/10.1007/s10853-010-4686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4686-y

Keywords

Navigation