Skip to main content
Log in

Separation of diatom valves and girdle bands from Coscinodiscus diatomite by settling method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diatom valves and girdle bands are useful micro–nano materials in nanotechnology and micro manufacturing. A settling method is used to extract high-purity diatom valves and girdle bands from Coscinodiscus diatomite. The average models of diatom valves and girdle bands are established. Stokes Law and hydrokinetic theories are used to analyze the settling velocity of valves and girdle bands. Based on the calculation results, settling experiments are carried out, by which clean diatom valves with purity of 80% and girdle bands with purity of 90% are obtained. This method can be applied to other particles separation problem to separate micro-particles with similar radius but different sectional area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

F g :

Equivalent gravity

F d :

Fluid drag force

μ :

Fluid viscosity

g :

Acceleration of gravity

S c :

Particle section area perpendicular to settling orientation

ρ s :

Density of particle

ρ 0 :

Density of liquid medium

k :

Drag coefficient

v :

Settling velocity

d :

Valve diameter

d 0 :

Micropore diameter

h :

Valve thickness

D :

Girdle band diameter

R :

Inradius of girdle band

H :

Height of girdle band

n :

Average number of micropores

r :

Radius of girdle band bore

V :

Particle volume

References

  1. Hildebrand M, Holton G, Joy DC, Doktycz MJ, Allison DP (2009) J Microsc-Oxf 235:172

    Article  CAS  Google Scholar 

  2. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) Trends Biotechnol 27:116

    Article  CAS  PubMed  Google Scholar 

  3. Allison DP, Dufrene YF, Doktycz MJ, Hildebrand M (2008) In: Methods in nano cell biology. Elsevier Academic Press Inc, San Diego, pp 61–86

  4. Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Nature 421:841

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Crawford SA, Chiovitti A, Pickett-Heaps J, Wetherbee R (2009) J Phycol 45:1353

    Article  CAS  Google Scholar 

  6. Losic D, Mitchell JG, Lal R, Voelcker NH (2007) Adv Funct Mater 17:2439

    Article  CAS  Google Scholar 

  7. Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Ind Eng Chem Res 48:8769

    Article  CAS  Google Scholar 

  8. Poulsen N, Berne C, Spain J, Kroger N (2007) Angew Chem-Int Ed 46:1843

    Article  CAS  Google Scholar 

  9. De Stefano L, Maddalena P, Moretti L, Rea I, Rendina I, De Tommasi E, Mocella V, De Stefano M (2009) Superlattices Microstruct 46:84

    Article  ADS  Google Scholar 

  10. Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) ACS Nano 2:2103

    Article  CAS  PubMed  Google Scholar 

  11. Schuler PF, Ghosh MM, Gopalan P (1991) Water Res 25:995

    Article  CAS  Google Scholar 

  12. Parkinson J, Gordon R (1999) Trends Biotechnol 17:190

    Article  CAS  PubMed  Google Scholar 

  13. Toster J, Iyer KS, Burtovyy R, Burgess SSO, Luzinov IA, Raston CL (2009) J Am Chem Soc 131:8356

    Google Scholar 

  14. Wang W, Gutu T, Gale DK, Jiao J, Rorrer GL, Chang CH (2009) J Am Chem Soc 131:4178

    Google Scholar 

  15. Townley HE, Woon KL, Payne FP, White-Cooper H, Parker AR (2007) Nanotechnology 18:5

    Article  Google Scholar 

  16. Parker AR, Townley HE (2007) Nat Nanotechnol 2:347

    Article  CAS  ADS  PubMed  Google Scholar 

  17. Fuhrmann T, Landwehr S, El Rharbi-Kucki M, Sumper M (2004) Appl Phys B 78:257

    Article  CAS  ADS  Google Scholar 

  18. Carlisle KB, Brito V, Gladysz GM, Ricci W, Koopman M (2009) J Mater Sci 44:1449. doi:10.1007/s10853-008-3169-xs

    Article  CAS  ADS  Google Scholar 

  19. De Stefano M, De Stefano L, Congestri R (2009) Superlattices Microstruct 46:64

    Article  ADS  Google Scholar 

  20. Blanco S, Alvarez I, Cejudo C (2008) J Appl Phycol 20:445

    Article  Google Scholar 

  21. Neethirajan S, Gordon R, Wang LJ (2009) Trends Biotechnol 27:461

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 50805005), the 863 Project of China (No. 2007AA04Z353, No. 2009AA043804), and the Innovation Fund Project for Graduate Student of Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Wang or Jun Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Wang, Y., Pan, J. et al. Separation of diatom valves and girdle bands from Coscinodiscus diatomite by settling method. J Mater Sci 45, 5736–5741 (2010). https://doi.org/10.1007/s10853-010-4642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4642-x

Keywords

Navigation