Skip to main content
Log in

Evaluation of oxidation resistance of thin continuous silicon oxycarbide fiber derived from silicone resin with low carbon content

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Si–O–C ceramic fiber was synthesized from a kind of silicone resin with low carbon content. The melt-spun resin fiber was exposed to SiCl4 vapor under a nitrogen gas flow, and the fiber was heated at 373 K for 2 h to complete the curing process. The cured fiber was pyrolyzed at 1273 K in an inert atmosphere to be converted to Si–O–C fiber. The entire chemical composition of the pyrolyzed fiber was almost identical to that of a previously reported resin which was pyrolyzed without curing. Auger spectrum analysis indicated an increase in silicon content near the fiber surface. The Si–O–C fiber thus obtained was heat-treated at 1511 or 1603 K in an air flow to evaluate oxidation resistance. Elemental analysis, XRD measurement, and SEM image observations were carried out on the oxidized Si–O–C fibers. Even with such thin fiber diameters, the oxidation process under these conditions was slow and the formation of a thin oxide layer on the fiber surface was confirmed. The existence of a residual Si–O–C core surrounded by a crystallized silica layer was observed in fractured fiber cross-sections after severe treatment conditions of 24 h oxidation at 1511 K or 3 h oxidation at 1603 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burns GT, Taylor RB, Xu Y, Zangvil A, Zank GA (1992) Chem Mater 4:1313

    Article  CAS  Google Scholar 

  2. Hurwitz FI, Heimann P, Farmer SC, Hembree DM Jr (1993) J Mater Sci 28:6622. doi:10.1007/BF00356406

    Article  CAS  ADS  Google Scholar 

  3. Soraru GD, D’Andrea G, Campostrini R, Babonneau F, Mariotto G (1995) J Am Ceram Soc 78:379

    Article  CAS  Google Scholar 

  4. Wilson AM, Zank G, Eguchi K, Xing W, Yates B, Dahn JR (1997) Chem Mater 9:2139

    Article  CAS  Google Scholar 

  5. Colombo P, Modesti M (1999) J Am Ceram Soc 82:573

    Article  CAS  Google Scholar 

  6. Rouxel T, Soraru GD, Vicens J (2001) J Am Ceram Soc 84:1052

    Article  CAS  Google Scholar 

  7. Renlund GM, Prochazka S, Doremus RH (1991) J Mater Res 6:2716

    Article  CAS  ADS  Google Scholar 

  8. Brewer CM, Bujalski DR, Parent VE, Su K, Zank GA (1999) J Sol-Gel Sci Technol 14:49

    Article  CAS  Google Scholar 

  9. Rochow EG (1987) Silicon and silicones. Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  10. Suminoe T, Matsumura Y, Tomomitsu N (1978) Japan Patent S53-88099

  11. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95:1409

    Article  CAS  Google Scholar 

  12. Narisawa M, Sumimoto R, Kita K, Kado H, Mabuchi H, Kim YW (2009) J Appl Polym Sci 114:2600

    Article  CAS  Google Scholar 

  13. Narisawa M, Sumimoto R, Kita K, Mabuchi H, Kim YW, Sugimoto M, Yoshikawa M (2009) Adv Mater Res 66:1

    Article  CAS  Google Scholar 

  14. Hurwitz FI, Hyatt L, Gorecki J, D’Amore L (1987) Ceram Eng Sci Proc 8:732

    Article  CAS  Google Scholar 

  15. West R, Lawrence DL, Djurovich PI, Yu H, Sinclair R (1983) Ceram Bull 62:899

    CAS  Google Scholar 

  16. Kamiya K, Katayama A, Suzuki H, Nishida K, Hashimoto T, Matsuoka J, Nasu H (1999) J Sol-Gel Sci Technol 14:95

    Article  CAS  Google Scholar 

  17. Sorarù GD, Dirè S, Berlinghieri A (May 6, 2004) US Patent 2004/0087431 A1

  18. Narisawa M, Yasuda H, Mori R, Mabuchi H, Oka K, Kim YW (2008) J Ceram Soc Japan 116:121

    Article  CAS  Google Scholar 

  19. Opila EJ (1999) J Am Ceram Soc 82:625

    Article  CAS  Google Scholar 

  20. More KL, Tortorelli PF, Ferber MK, Keiser JR (2000) J Am Ceram Soc 83:211

    Article  CAS  Google Scholar 

  21. Hulbert SF (1969) J Brit Ceram Soc 6:11

    CAS  Google Scholar 

  22. Shimoo T, Chen H, Okamura K (1992) J Ceram Soc Japan 100:929

    CAS  Google Scholar 

  23. Kakimoto K, Shimoo T, Okamura K (1998) J Am Ceram Soc 81:409

    Article  CAS  Google Scholar 

  24. Bouillon E, Mocaer D, Villeneuve JF, Pailler R, Naslain R, Monthioux M, Oberlin A, Guimon C, Pfister G (1991) J Mater Sci 26:1517. doi:10.1007/BF00544661

    Article  CAS  ADS  Google Scholar 

  25. Saha A, Raj R, Williamson DL (2006) J Am Ceram Soc 89:2188

    CAS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by a Grant-in Aid for Scientific Research C (No. 20560627) from Japan Society of Promotion Science. We thank to Professor Young-Wook Kim (The University of Seoul) for information about physical–mechanical properties of YR 3370 resin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Narisawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narisawa, M., Sumimoto, R. & Kita, K. Evaluation of oxidation resistance of thin continuous silicon oxycarbide fiber derived from silicone resin with low carbon content. J Mater Sci 45, 5642–5648 (2010). https://doi.org/10.1007/s10853-010-4629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4629-7

Keywords

Navigation