Skip to main content
Log in

Wet hydrogen sulfide cracking of steel monitoring by acoustic emission: discrimination of AE sources

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the petroleum industry, it is known that equipments which operate in wet hydrogen sulfide (H2S) media can be subjected to damages like Hydrogen Induced Cracking (HIC) and Sulfide Stress Cracking (SSC). In this study, Acoustic Emission (AE) technique is used to monitor the cracking of steels immersed in sour media. The aim is to establish a methodology for HIC and SSC detection by AE and therefore to get more detailed information on the cracking mechanisms in steels during standard tests. The main focus of this article is the preliminary identification of the different AE sources involved during the tests performed in sour media. The methodology of identification of the different AE signals and the monitoring of HIC and SSC tests performed on different steel grades are described. The results indicate that AE can provide an early detection of cracking (HIC and SSC) when the various AE sources are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. NACE (2003) MR0175/ISO 15156-2

  2. NACE (1996) International Standard Test Method NACE TM0284-96. NACE

  3. Eliassen S, Smith L, Jackman P (2002) In: Oil and gas production, 2nd edn. European Federation of Corrosion (EFC number16)

  4. NACE (1996) International Standard Test Method NACE TM0177-96. NACE

  5. Mazille H, Rothéa R (1994) In: Tretheway KR, Roberge PR (eds) Modelling aqueous corrosion. Kluwer Academic, Netherlands, p 103

    Google Scholar 

  6. Yuyama S, Kishi T, Hisamatsu Y (1983) J Acoust Emission 2(1/2):71

    CAS  Google Scholar 

  7. Pollock WJ, Hardie D, Holroyd NJH (1982) Brit Corros J 17(3):103

    CAS  Google Scholar 

  8. Gerberich WW, Jones RH, Friesel MA, Nozue N (1988) Mater Sci Eng 103:185

    Article  Google Scholar 

  9. Ferrer F, Idrissi H, Mazille H, Fleischmann P, Labeeuw P (1999) Wear 231:108

    Article  CAS  Google Scholar 

  10. Jones RH, Friesel MA (1992) Corrosion 48(9):751

    Article  CAS  Google Scholar 

  11. Mazille H, Rothea R, Tronel C (1995) Corros Sci 37(9):1365

    Article  CAS  Google Scholar 

  12. Fregonese M, Idrissi H, Mazille H, Renaud L, Cetre Y (2001) J Mater Sci 36:557. doi:10.1023/A:1004891514836

    Article  CAS  Google Scholar 

  13. Fregonese M, Idrissi H, Mazille H, Renaud L, Cetre Y (2001) Corros Sci 43(4):627

    Article  CAS  Google Scholar 

  14. Kim YP, Fregonese M, Mazille H, Féron D, Santarini G (2003) NDT&E Int 36:553

    Article  CAS  Google Scholar 

  15. Kim YP, Fregonese M, Mazille H, Féron D, Santarini G (2006) Corros Sci 48(12):3945

    Article  CAS  Google Scholar 

  16. Bellanger F, Mazille H, Idrissi H (2002) NDT&E Int 35:385

    Article  Google Scholar 

  17. Jaubert L, Fregonese M, Caron D, Ferrer F, Franck C, Gravy E, Labeeuw P, Mazille H, Renaud L (2005) Insight 47(8):465

    Article  CAS  Google Scholar 

  18. Weng C-C, Chen R-T (1993) J Chinese Inst Eng 16(4):489

    CAS  Google Scholar 

  19. Weng C-C, Chen R-T (1993) J Chinese Inst Eng 16(2):195

    CAS  Google Scholar 

  20. Cayard MS, Kane RD (1997) Evaluation of various methods of reducing the duration of SSC qualification testing. NACE International, Paper no. 57

  21. Tsai SY, Shih HC (1998) J Electrochem Soc 145(6):1968

    Article  CAS  Google Scholar 

  22. Gingell ADB, Garat X (1999) Observations of damage modes as a function of microstructure during NACE TM0177-96 tensile testing of API 5L grade X60 linepipe steel. NACE International, Paper no. 600

  23. Amami S, Marchand P, Duval S, Longaygue X, Fregonese M, Mazille H, Millet JP (2003) Early detection and monitoring of sulfide stress cracking (SSC) of steels by an acoustic emission method. Environmental Degradation of Engineering Materials, Bordeaux, France

    Google Scholar 

  24. Galland J, Sojka J, Jerome M (2004) In: Normand B, Pebere N, Richard C, Wery M (eds) Prévention et lutte contre la corrosion. Presses polytechniques et Universitaires Romandes, Lausanne, pp 273–309

  25. Rawlings RD (1987) In: Kuhn AT (ed) Techniques in electrochemistry, corrosion and metal finishing. A handbook. Wiley, Brisbane, p 351

    Google Scholar 

  26. Kittel J, Smanio V, Fregonese M, Garnier L, Lefebvre X (2010) Corros Sci 52(4):1386

    Article  CAS  Google Scholar 

  27. Liu ZY, Dong CF, Li XG, Zhi Q, Cheng YF (2009) J Mater Sci 44(16):4228. doi:10.1007/s10853-009-3520-x

    Article  CAS  ADS  Google Scholar 

  28. Abelev E, Sellberg J, Ramanarayanan TA, Bernasek SL (2009) J Mater Sci 44:6167. doi:10.1007/s10853-009-3854-4

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Boinet (Euro-Physical Acoustics), for his help in the analysis of AE data, and G. Parrain for his technical support. H. Marchebois (Vallourec) is also acknowledged for helpful discussions on H2S cracking mechanisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Fregonese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smanio, V., Fregonese, M., Kittel, J. et al. Wet hydrogen sulfide cracking of steel monitoring by acoustic emission: discrimination of AE sources. J Mater Sci 45, 5534–5542 (2010). https://doi.org/10.1007/s10853-010-4613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4613-2

Keywords

Navigation