Skip to main content
Log in

Temperature-dependent barrier height in CdSe Schottky diode

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reports the measurements of temperature-dependent barrier height (BH) of CdSe Schottky diodes. These diodes have been made by thermal evaporation technique on ITO glass and glass substrates at room temperature. The XRD measurements have been made and the average particle size has been calculated which comes out to be ~20 nm. The Au dots have been made for non-ohmic contacts. IV characteristics have been measured at different temperatures (280–330 K). These characteristics obey the thermionic emission theory. The BH decreases and ideality factor increases with the increase in temperature. Richardson’s plot has been made and Richardson’s constant has been calculated which is less than the expected value. Capacitance measurements have been done at different frequencies and the interface states have been calculated. The results have been explained on the basis of BH inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han L, Qin D, Jiang X, Liu Y, Wang L, Chen J, Cao Y (2006) Nanotechnology 17:4736

    Article  CAS  Google Scholar 

  2. Aneva Z, Nesheva D, Main C, Reynolds S, Fitzgerald AG, vateva E (2008) Semicond Sci Technol 23:095002

    Article  ADS  Google Scholar 

  3. Lade SJ, Uplane MD, Lokhande CD (2001) Mater Chem Phys 68:36

    Article  CAS  Google Scholar 

  4. Loizos Z, Spyrellis N (1991) Thin Solid Films 204:139

    Article  CAS  ADS  Google Scholar 

  5. Fendler JH (2001) Chem Mater 13:3196

    Article  CAS  Google Scholar 

  6. Hodes G, Howell IDJ, Peter LM (1992) J Electrochem Soc 139:3136

    Article  CAS  Google Scholar 

  7. Qiang L, Wanqi J (2006) Semocond Sci Technol 21:72

    Article  ADS  Google Scholar 

  8. Kim SW, Lee KM, Lee JH, Seo KS (2005) IEEE Electron Dev Lett 26:787

    Article  CAS  ADS  Google Scholar 

  9. Ayyildiz E, Cetin H, Horvath Zs (2005) Appl Surf Sci 252:1153

    Article  CAS  ADS  Google Scholar 

  10. Im HJ, Ding Y, Pelz JP, Choyke WJ (2001) Phys Rev B 64(9):075310

    Article  ADS  Google Scholar 

  11. Osvald J (2006) Solid State Electron 50:228

    Article  CAS  ADS  Google Scholar 

  12. Vanalme GM, Van Meirhaeghe RL, Cardon F, van Daele P (1997) Semicond Sci Technol 12:907

    Article  CAS  ADS  Google Scholar 

  13. Tung RT (1992) Phys Rev B 45:13509

    Article  ADS  Google Scholar 

  14. Cimilli FE, Saglam M, Turut A (2007) Semicond Sci Technol 22:851

    Article  CAS  ADS  Google Scholar 

  15. Leroy WP, Opsomer K, Forment S, Van Meirhaeghe RL (2005) Solid State Electron 49:878

    Article  CAS  ADS  Google Scholar 

  16. Schmitsdorf RF, Kampen TU, Monch W (1997) J Vac Sci Technol B 15:1221

    Article  Google Scholar 

  17. Coskun C, Aydoğan S, Efeoğlu H (2004) Semicond Sci Technol 19:242

    Article  CAS  ADS  Google Scholar 

  18. Gumus A, Turut A, Yalcin N (2002) J Appl Phys 91:245

    Article  CAS  ADS  Google Scholar 

  19. Dobrocka E, Osvald J (1994) Appl Phys Lett 65:575

    Article  CAS  ADS  Google Scholar 

  20. Tripathi SK, Kumar A (1988) Thin Solid Films 165:687

    Article  Google Scholar 

  21. Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts. Clarendon Press, Oxford, pp 20, 48

  22. Duman S (2008) Semicond Sci Technol 23:075042

    Article  ADS  Google Scholar 

  23. Chand S, Kumar J (1996) Semicond Sci Technol 11:1203

    Article  CAS  ADS  Google Scholar 

  24. Prakash O, Muurlidhara KN, Ravindra K (1990) IEEE Technol Rev 7:260

    Google Scholar 

  25. Tungs RT (2001) Mater Sci Eng R 35:1

    Article  Google Scholar 

  26. Chand S, Kumar J (1997) J Appl Phys 82:5005

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by DST (Major Research Project), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, S.K. Temperature-dependent barrier height in CdSe Schottky diode. J Mater Sci 45, 5468–5471 (2010). https://doi.org/10.1007/s10853-010-4601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4601-6

Keywords

Navigation