Skip to main content
Log in

Effects of concentration on the alkali-treatment of ZSM-5 zeolite: a study on dividing points

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alkali-treatment for modification or dissolution has attracted extensive attention as an innovative means of preparing porous materials. The hierarchical porosity of modified zeolite is highly dependent on its treatment conditions. However, studies on critical alkali-treatment concentrations, specifically those that discuss the dividing points, have not yet been reported. In this article, the pore and crystalline properties of ZSM-5 zeolite samples modified by different concentrations of alkali-treatment are investigated. The experimental results show that the pore properties of the samples change as a function of the alkaline concentration. The total surface, mesopore surface area, total pore volume, mesopore volume, and average pore diameter of ZSM-5 zeolites increase and then decrease with increasing alkaline concentrations. The micropore surface area, micropore volume, and crystallinity of the samples decrease monotonously. The following dividing points are proposed: 0.40 mol/L as the threshold for alkali-modification and 1.00 mol/L as the starting point for alkali-dissolution. A possible desilication mechanism is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Groen JC, Bach T, Ziese U, Paulaime-van Donk AM, de Jong Krijn P, Moulijn JA, Pérez-Ramírez J (2005) J Am Chem Soc 127:10792

    Article  PubMed  Google Scholar 

  2. Le Van Mao R, Le ST, Ohayon D, Caillibot F, Gelebart L, Denes G (1997) Zeolites 19:270

    Article  Google Scholar 

  3. Groen JC, Moulijn JA, Pérez-Ramírez J (2007) Ind Eng Chem Res 46:4193

    Article  Google Scholar 

  4. Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J (2004) Micropor Mesopor Mater 69:29

    Article  Google Scholar 

  5. Su LL, Liu L, Zhuang JQ, Wang HX, Li YG, Shen WJ, Xu Y, Bao XH (2003) Catal Lett 91:155

    Article  Google Scholar 

  6. Groen JC, Jansen JC, Moulijn JA, Pérez-Ramírez J (2004) J Phys Chem B 108:13062

    Article  Google Scholar 

  7. Groen JC, Moulijn JA, Pérez-Ramírez J (2006) J Mater Chem 16:2121

    Article  Google Scholar 

  8. Panagiotopoulou C, Kontori E, Perraki T, Kakali G (2007) J Mater Sci 42:2967. doi:10.1007/s10853-006-0531-8

    Article  ADS  Google Scholar 

  9. MacKenzie KJD, Brew DRM, Fletcher RA, Vagana R (2007) J Mater Sci 42:4667. doi:10.1007/s10853-006-0173-x

    Article  ADS  Google Scholar 

  10. Nath DCD, Bandyopadhyay S, Yu AB, Blackburn D, White C (2010) J Mater Sci 45:1354. doi:10.1007/s10853-009-4091-6

    Article  ADS  Google Scholar 

  11. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Chem Soc Rev 37:2530

    Article  PubMed  Google Scholar 

  12. Ogura M, Shinomiya S, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Appl Catal A Gen 219:33

    Article  Google Scholar 

  13. Suzuki T, Okuhara T (2001) Micropor Mesopor Mater 43:83

    Article  Google Scholar 

  14. Groen JC, Peffer LAA, Moulijin JA, Pérez-Ramírez J (2004) Colloids Surf A Physicochem Eng Aspects 241:53

    Article  Google Scholar 

  15. Zhao L, Shen BJ, Gao JS, Xu CM (2008) J Catal 258:228

    Article  Google Scholar 

  16. Groen JC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez J (2007) J Am Chem Soc 129:355

    Article  PubMed  Google Scholar 

  17. Jin F, Tian Y, Li YD (2009) Ind Eng Chem Res 48:1873

    Article  Google Scholar 

  18. Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud KP, Svelle S (2008) Appl Catal A Gen 345:43

    Article  Google Scholar 

  19. Jung JS, Park JW, Seo G (2005) Appl Catal A 288:149

    Article  Google Scholar 

  20. Inagaki S, Ogura M, Inami T, Sasaki Y, Kikuchi E, Matsukata M (2004) Micropor Mesopor Mater 74:163

    Article  Google Scholar 

  21. Zhang Y, Dou T, Li YP, Shi DX, Zhao Z (2005) J Inorg Mater 20:1423

    MATH  Google Scholar 

  22. Song CM, Jiang J, Yan ZF (2008) J Porous Mater 15:205

    Article  Google Scholar 

  23. Song CM, Yan ZF (2008) Asia-Pac J Chem Eng 3:275

    Article  Google Scholar 

  24. Čižmek A, Subotić B, Aiello R, Crea F, Nastro A, Tuoto C (1995) Micropor Mater 43:159

    Google Scholar 

  25. Čižmek A, Subotić B, Šmit I, Tonejc A, Aiello R, Crea F, Nastro A (1997) Micropor Mater 8:159

    Article  Google Scholar 

  26. Pérez-Ramírez J, Verboekend D, Bonilla A, Abello S (2009) Adv Funct Mater 19:3972

    Article  Google Scholar 

  27. Groen JC, Pérez-Ramírez J (2004) Appl Catal A Gen 268:121

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the supports by the National Natural Science Foundation of China (Grant Nos. 20725620 and 20906102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojian Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 333 kb)

Supplementary material 2 (DOC 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Xu, C., Gao, S. et al. Effects of concentration on the alkali-treatment of ZSM-5 zeolite: a study on dividing points. J Mater Sci 45, 5406–5411 (2010). https://doi.org/10.1007/s10853-010-4593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4593-2

Keywords

Navigation