Skip to main content
Log in

Hydrolytic stability of sodium silicate gels in the presence of aluminum

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycondensation in alkali silicate solutions comprises a fundamental process of the geopolymerization technology. Previous works had shown that the hydrolytic stability of sodium silicate gels depends on the SiO2/Na2O ratio. Sodium silicate gels totally insoluble in water can be produced at SiO2/Na2O molar ratios higher than 4.4. This article aims at elucidating the effect of tetra-coordinated aluminum addition on the hydrolytic stability of sodium silicate gels. According to the results, the aluminum addition stabilizes the sodium silicate gels in an aqueous environment. A sodium silicate gel with SiO2/Na2O molar ratio 3.48, which is totally soluble in deionized water at ambient temperature, can be transformed to insoluble sodium hydroaluminosilicates with the addition of tetrahedral aluminum at Al/Si molar ratios higher than 0.08. In addition, this article studies the structure of prepared sodium hydroaluminosilicates and draws very useful conclusions for the geopolymerization technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davidovits J (2008) Geopolymer chemistry & applications, Chap. 2, 2nd edn. Institute Géopolymère, Saint-Quentin, p 19

    Google Scholar 

  2. Dimas D, Giannopoulou I, Panias D (2009) J Mater Sci 44:3719. doi:10.1007/s10853-009-3497-5

    Article  ADS  Google Scholar 

  3. Vallepu R, Fernandez Jimenez AM, Terai T, Mikuni A, Palomo A, Mackenzie KJD, Ikeda K (2006) J Ceram Soc Jpn 114(7):624

    Article  Google Scholar 

  4. Feng D, Mikuni A, Hirano Y, Komatsu R, Ikeda K (2006) J Ceram Soc Jpn 113(1):82

    Article  Google Scholar 

  5. Davidovits J (2005) Geopolymer 2005 world congress, Saint-Quentin, France, pp 9–39

  6. Panias D, Giannopoulou I, Perraki T (2007) Colloids Surf A 301:246

    Article  Google Scholar 

  7. Maragos I, Giannopoulou I, Panias D (2008) Miner Eng 22:196

    Article  Google Scholar 

  8. Dimas D, Giannopoulou I, Panias D (2009) Miner Process Extr Metall Rev 30:211

    Article  Google Scholar 

  9. Xu H, van Deventer JSJ (2000) Int J Miner Process 59:247

    Article  Google Scholar 

  10. Palomo A, Grutzeck MW, Blanco MT (1999) Cem Concr Res 29:1323

    Article  Google Scholar 

  11. Cheng TW, Chiu JP (2003) Miner Eng 16:205

    Article  Google Scholar 

  12. Wu HC, Sun P (2007) Constr Build Mater 21:211

    Article  Google Scholar 

  13. Pinto AT, Vieira E (2005) Geopolymer 2005 world congress, Saint-Quentin, France, pp 173–176

  14. Davidovits J (2008) Geopolymer chemistry & applications, Chap. 4, 2nd edn. Institute Géopolymère, Saint-Quentin, p 61

    Google Scholar 

  15. Davidovits J (1999) Geopolymer ‘99 2nd international conference, Saint-Quentin, France, pp 9–39

  16. Warren BE, Biscoe L (1938) J Am Ceram Soc 21(2):49

    Article  Google Scholar 

  17. Warren BE, Loring AD (1935) J Am Ceram Soc 18(1–12):269

    Article  Google Scholar 

  18. Hadke M, Mozgawa W (1993) Vib Spectrosc 5:75

    Article  Google Scholar 

  19. Komnitsas K, Zaharaki D, Perdikatsis V (2009) J Hazard Mater 161:760

    Article  PubMed  Google Scholar 

  20. Clayden NJ, Esposito S, Aronne A, Pernice P (1999) J Non-Cryst Solids 258:11

    Article  ADS  Google Scholar 

  21. Lecomte I, Henrist C, Liegeois M, Maseri F, Rulmont A, Cloots R (2006) J Eur Ceram Soc 26:3789

    Article  Google Scholar 

  22. Mozgawa W (2001) J Mol Struct 596:129

    Article  ADS  Google Scholar 

  23. Florke OW et al (2008) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  24. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  25. Morrow BA, McFarlan AJ (1991) Langmuir 7:1695

    Article  Google Scholar 

  26. Burneau A, Barres O, Gallas JP, Lavalley JC (1990) Langmuir 6:1364

    Article  Google Scholar 

  27. Ranea AV, Carmichael I, Schneider FW (2009) J Phys Chem C 113:2149

    Article  Google Scholar 

  28. Williams Q (1995) In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington

    Google Scholar 

  29. Frost LR, Dickfos JM (2008) Spectrochim Acta A 71:143

    Article  Google Scholar 

  30. Avdeeva IT, Vorsina AI (1969) Ser Khim 10:2197

    Google Scholar 

  31. Durie AR, Milne WJ (1967) Spectrochim Acta A 23:2885

    Article  Google Scholar 

  32. Kerkhof JN, White LJ, Hem LS (1977) J Pharm Sci 66:1533

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Senator Committee of Basic Research of the National Technical University of Athens, Programme “PEBE-2007”, R.C. No.:65/1634 for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Panias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannopoulou, I., Panias, D. Hydrolytic stability of sodium silicate gels in the presence of aluminum. J Mater Sci 45, 5370–5377 (2010). https://doi.org/10.1007/s10853-010-4586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4586-1

Keywords

Navigation