Skip to main content
Log in

Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium(VI) ions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Four kinds of NH2-functionalized nano magnetic polymer adsorbents (NH2-NMPs) coupled with different diamino groups, i.e., ethylenediamine (EDA), diethylenetriamine (DETA), triethylentetramine (TETA), and tetraethylenepentamine (TEPA), named as EDA-NMPs, DETA-NMPs, TETA-NMPs, and TEPA-NMPs, respectively, have been prepared and characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), elementary analyzer (EA), Brunauer, Emmett, Teller surface area analyzer (BET), and Fourier transform infrared spectroscopy (FTIR). The sorptive characteristics of the NH2-NMPs intended for removal of chromium(VI) was investigated. Batch adsorption studies were carried out to optimize adsorption conditions. The evaluation of the adsorption kinetics, isotherm, and thermodynamics was deeply investigated. The results showed the adsorptive properties of the NH2-NMPs were highly pH dependent. Adsorption of Cr(VI) reached equilibrium within 30 min. The data of adsorption kinetics obeyed pseudo-second-order rate mechanism well. The adsorption data for Cr(VI) onto NH2-NMPs were well fitted to the Langmuir isotherm. The maximum adsorption capacities (q m) of the NH2-NMPs to Cr(VI) were 136.98, 149.25, 204.08, 370.37 mg g−1, for EDA-NMPs, DETA-NMPs, TETA-NMPs, and TEPA-NMPs, respectively. Thermodynamic parameters like ΔH θ, ΔS θ, and ΔG θ for the adsorption of Cr(VI) onto the NH2-NMPs have been estimated, which suggested that the adsorption processes of Cr(VI) onto the NH2-NMPs were endothermic and entropy favored in nature. The adsorption mechanism studies showed that the adsorption of Cr(VI) onto the NH2-NMPs could be related with electrostatic attraction, ion exchange, and coordination interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Testa JJ, Grela MA, Litter MI (2004) Environ Sci Technol 38:1589

    Article  PubMed  Google Scholar 

  2. Sreeram KJ, Rao JR, Sundaram R, Nair BU, Ramasami T (2004) Green Chem 2:37

    Article  Google Scholar 

  3. Liu CC, Wang MK, Chiou CS, Li YS, Lin YA, Huang SS (2006) Ind Eng Chem Res 45:8891

    Article  Google Scholar 

  4. Xing YQ, Chen XM, Wang DH (2007) Environ Sci Technol 41:1439

    Article  PubMed  Google Scholar 

  5. Park HJ, Tavlarides LL (2008) Ind Eng Chem Res 47:3401

    Article  Google Scholar 

  6. Chun L, Chen HZ, Li ZH (2004) Process Biochem 39:541

    Article  Google Scholar 

  7. Kulkarni PS, Kalyani V, Mahajani VV (2007) Ind Eng Chem Res 46:8176

    Article  Google Scholar 

  8. Manuel PC, Jose MM, Rosa TM (1995) Water Res 29:2174

    Article  Google Scholar 

  9. Hota G, Kumar BR, Ng WJ, Ramakrishna S (2008) J Mater Sci 43:212. doi:10.1007/s10853-007-2142-4

    Article  ADS  Google Scholar 

  10. Gang D, Hu W, Banerji SK, Clevenger TE (2001) Ind Eng Chem Res 40:1200

    Article  Google Scholar 

  11. Reichert J, Binner JGP (1996) J Mater Sci 31:1231. doi:10.1007/BF00353102

    Article  ADS  Google Scholar 

  12. Sharma DC, Froster CF (1993) Water Res 27:1201

    Article  Google Scholar 

  13. Oliveira EA, Montanher SF, Andrade AD, Nóbrega JA, Rollemberg MC (2005) Process Biochem 40:3485

    Article  Google Scholar 

  14. Ren YM, Zhang ML, Zhao D (2008) Desalination 228:135

    Article  Google Scholar 

  15. Ramanujan RV, Ang KL, Venkatraman S (2009) J Mater Sci 44:1381. doi:10.1007/s10853-006-1064-x

    Article  ADS  Google Scholar 

  16. Hu J, Chen GH, Lo IMC (2006) J Environ Eng 132:709

    Article  Google Scholar 

  17. Sag Y (2001) Sep Purif Method 30:1

    Article  Google Scholar 

  18. Gulati R, Saxena RK, Gupta R (2002) World J Microbiol Biotechnol 18:397

    Article  Google Scholar 

  19. Huang SH, Chen DH (2009) J Hazard Mater 163:174

    Article  PubMed  Google Scholar 

  20. Deng SB, Ting YP (2005) Environ Sci Technol 39:8490

    Article  PubMed  Google Scholar 

  21. Bayramoglu G, Arıca MY (2005) Sep Purif Technol 45:192

    Article  Google Scholar 

  22. Deng SB, Bai RB (2004) Water Res 38:2424

    Article  Google Scholar 

  23. Qus C, Yang HB, Ren DW (1999) J Colloid Interface Sci 215:190

    Article  Google Scholar 

  24. Berger P, Adelman NB, Bechman KJ (1999) J Chem Educ 76:943

    Article  Google Scholar 

  25. Cai BX, Chen YW (2001) Basical chemistry experiments. Science press, Beijing, China

    Google Scholar 

  26. Molokwane PE, Meli KC, Nkhalambayausi-Chirwa EM (2008) Water Res 42:4538

    Article  PubMed  Google Scholar 

  27. Ramnani SP, Sabharwal S (2006) React Funct Polym 66:902

    Article  Google Scholar 

  28. Watson JHP, Cressey BA (2000) J Magn Magn Mater 214:13

    Article  ADS  Google Scholar 

  29. Kang XP, Liu HH, Chen J (1999) Phys Test Chem Anal: Chem Anal 35:139

    Google Scholar 

  30. Weng CH, Wang JH, Huang CP (1997) Water Sci Technol 35:55

    Google Scholar 

  31. Sandhya B, Tonni AK (2004) Chemosphere 54:951

    Article  Google Scholar 

  32. Taty-Costodes VC, Fauduet H, Porte C, Delacroix A (2003) J Hazard Mater 105:121

    Article  PubMed  Google Scholar 

  33. Kadirvelu K, Tharmaraiselvi K, Namasivayam C (2001) Sep Purif Technol 24:497

    Article  Google Scholar 

  34. Singh KK, Rastogi R, Hasan SH (2005) J Colloid Interface Sci 290:61

    Article  PubMed  Google Scholar 

  35. Melo JS, D’Souza SF (2004) Bioresour Technol 92:151

    Article  PubMed  Google Scholar 

  36. Sarin V, Pant KK (2006) Bioresour Technol 97:15

    Article  PubMed  Google Scholar 

  37. Dupont L, Gallon E (2003) Environ Sci Technol 37:4235

    Article  PubMed  Google Scholar 

  38. Gupta VK, Shrivastava AK, Jain N (2001) Water Res 35:4079

    Article  PubMed  Google Scholar 

  39. Arica MY, Tuzun I, Yalcin E, Ince O, Bayramoglu G (2005) Process Biochem 40:2351

    Article  Google Scholar 

  40. Hu J, Chen GH, Lo IMC (2005) Water Res 39:4528

    Article  PubMed  Google Scholar 

  41. Hu J, Lo IMC, Chen GH (2005) Langmuir 21:11173

    Article  PubMed  Google Scholar 

  42. Janoš P, Hula V, Bradnová P, Pilařová V, Šedlbauer J (2009) Chemosphere 75:732

    Article  PubMed  Google Scholar 

  43. Bai SR, Abraham TE (2001) Bioresour Technol 79:73

    Article  Google Scholar 

  44. Ghoul M, Bacquet M, Morcellet M (2003) Water Res 37:729

    Article  PubMed  Google Scholar 

  45. Deng SB, Bai RB (2003) Environ Sci Technol 37:5799

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules (2007-KL-2007), the Zhejiang Science and Technology Bureau (2007F0045) and the Ningbo Science and Technology Bureau (2009A610002) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Yu Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, YG., Shen, HY., Pan, SD. et al. Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium(VI) ions. J Mater Sci 45, 5291–5301 (2010). https://doi.org/10.1007/s10853-010-4574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4574-5

Keywords

Navigation