Skip to main content
Log in

Study of structural change in Wyodak coal in high-pressure CO2 by small angle neutron scattering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Small angle neutron scattering (SANS) has been applied to examine the effect of high-pressure CO2 on the structure of Wyodak coal. Significant decrease in the scattering intensities on the exposure of the coal to high-pressure CO2 showed that high-pressure CO2 rapidly gets adsorbed on the coal and reaches to all the pores in the structure. This is confirmed by strong and steep exothermic peaks observed on DSC scans during coal/CO2 interactions. In situ small angle neutron scattering on coal at high-pressure CO2 atmosphere showed an increase in scattering intensities with time suggesting that after adsorption, high-pressure CO2 immediately begins to diffuse into the coal matrix, changes the macromolecular structure of the coal, swells the matrix, and probably creates microporosity in coal structure by extraction of volatile components from coal. Significant decrease in the glass transition temperature of coal caused by high-pressure CO2 also confirms that CO2 at elevated pressures dissolve in the coal matrix, results in significant plasticization and physical rearrangement of the coal’s macromolecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Survey of energy resources—executive summary (2007) World Energy Council, London

  2. Mavor MJ, Robinson JR, Gale J (2002) SPE Paper 75683. Gas technology symposium 2002, Calgary, Canada

  3. Ozdemir E, Schroeder K, Morsi BI (2002) Am Chem Soc Div Environ Chem Prepr 42:310

    Google Scholar 

  4. Shi JQ, Durucan S (2005) Oil Gas Sci Technol 60:547

    Article  Google Scholar 

  5. White CM, Smith DH, Jones KL, Goodman AL, Jikich SA, LaCount RB, DuBose SB, Ozdemir E, Morsi BI, Schroeder KT (2005) Energy Fuels 19:659

    Article  Google Scholar 

  6. Reeves S (2002) World Oil 223(12):56

    Google Scholar 

  7. Prusty BK (2008) J Nat Gas Chem 17:29

    Article  Google Scholar 

  8. Gunter WD, Gentzis T, Rottenfusser BA, Richardson RJH (1997) Energy Convers Manage 38S:217

    Article  Google Scholar 

  9. Karacan CO (2003) Energy Fuel 17(6):1595

    Article  Google Scholar 

  10. Reucroft PJ, Patel H (1986) Fuel 65:816

    Article  Google Scholar 

  11. Reucroft PJ, Patel KB (1983) Fuel 62:279

    Article  Google Scholar 

  12. Reucroft PJ, Sethuraman AR (1987) Energy Fuels 1:72

    Article  Google Scholar 

  13. Larsen JW (2004) Int J Coal Geol 57:63

    Article  Google Scholar 

  14. Green TL, Kovac J, Brenner D, Larsen JW (1982) In: Meyers RA (ed) Coal Structure. Academic Press, New York, p 199

    Google Scholar 

  15. Larsen JW, Mohammadi M (1990) Energy Fuels 4:100

    Article  Google Scholar 

  16. Mirzaeian M, Hall PJ (2006) Energy Fuels 20:2022

    Article  Google Scholar 

  17. Robertson EP (2009) Int J Coal Geol 77:234

    Article  Google Scholar 

  18. Ellis MS, Flores RM, Ochs AM, Stricker GD, Gunther GL, Rossi GS, Bader LR, Schuenemeyer JH, Power HC (1999) U.S. Geological Survey Professional Paper 1625-A, p 84

  19. Winans RE, Thiyagarajan P (1988) Energy Fuels 2:356

    Article  Google Scholar 

  20. King SM (1999) In: Pethrick RA, Dawkins JV (eds) Modern techniques for polymer characterization. John Wiley & Sons, p 171

  21. Hall PJ, Brown SD, Calo JM (2000) Fuel 79:1327

    Article  Google Scholar 

  22. Guinier A, Fournet G (1995) Small angle scattering of X-ray. John Wiley & Sons, New York

    Google Scholar 

  23. Kostorz G (1979) Treatise on materials science and technology, vol 15. Academic Press, New York

    Google Scholar 

  24. Gethner JS (1986) J Appl Phys 59:1068

    Article  ADS  Google Scholar 

  25. Higgins JS, Benoit HC (1994) Polymers and neutron scattering. Clarendon Press, Oxford

    Google Scholar 

  26. Gregg SJ, Sing KSW (1967) Adsorption, surface area and porosity. Academic Press, New York

    Google Scholar 

  27. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids, principles, methodology and applications. Academic Press, New York

    Google Scholar 

  28. Tanaka R, Hunt JE, Winans RE, Thiyagarajan P, Sato S, Takanohashi T (2003) Energy Fuels 17(1):127

    Article  Google Scholar 

  29. Ramsay JDF (1998) Adv Colloid Interface Sci 76–77:13

    Article  Google Scholar 

  30. Hall PJ, Brown S, Fernandez J, Calo JM (2000) Carbon 38:1257

    Article  Google Scholar 

  31. Larsen JW, Hall PJ, Wernett PC (1995) Energy Fuels 9:324

    Article  Google Scholar 

  32. Foster MD, Jensen KF (1990) J Colloid Interface Sci 135:132

    Article  Google Scholar 

  33. Hall PJ, Ruiz Machado W, Gascon Galan D, Barrientos Barria EL, Sherrington J (1996) Chem Soc, Faraday Trans 92:2607

    Article  Google Scholar 

  34. Meyers RA (1982) Coal structure. Academic Press, INC., New York

    Google Scholar 

  35. Mondragon F, Quintero G, Jaramillo A, Fernandez J, Calo JM, Ruiz W, Hall PJ (1997) J Mater Sci 32(6):1455. doi:10.1023/A:1018549800150

    Article  Google Scholar 

  36. Mackinnon AJ, Antxustegi MM, Hall PJ (1994) Fuel 73(1):213

    Article  Google Scholar 

  37. Mi Y, Zheng S (1998) Polymer 39:3709

    Article  Google Scholar 

  38. Chiou JS, Barlow JW, Paul DR (1985) J Appl Polym Sci 30:2633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Mirzaeian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzaeian, M., Hall, P.J. & Jirandehi, H.F. Study of structural change in Wyodak coal in high-pressure CO2 by small angle neutron scattering. J Mater Sci 45, 5271–5281 (2010). https://doi.org/10.1007/s10853-010-4570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4570-9

Keywords

Navigation