Skip to main content

Cathodoluminescence properties of SiO2:Pr3+and ZnO·SiO2:Pr3+ phosphor nanopowders

Abstract

The successful incorporation of ZnO nanoparticles in Pr3+-doped SiO2 using a sol–gel process is reported. SiO2:Pr3+ gels, with or without ZnO nanoparticles, were dried at room temperature and annealed at 600 °C. On the basis of the X-ray Diffraction (XRD) results, the SiO2 was amorphous regardless of the incorporation of Pr3+ and nanocrystalline ZnO or annealing at 600 °C. The particles were mostly spherical and agglomerated as confirmed by Field Emission Scanning Electron Microscopy. Thermogravimetric analysis of dried gels performed in an N2 atmosphere indicated that stable phases were formed at ≥900 °C. Absorption bands ascribed to 3H4-3P(J = 0,1,2), 1I6 and 1D2 in the UV–VIS region were observed from SiO2:Pr3+ colloids. The red cathodoluminescent (CL) emission corresponding to the 3P0 → 3H6 transition of Pr3+ was observed at 614 nm from dried and annealed SiO2:Pr3+ powder samples. This emission was increased considerably when ZnO nanoparticles were incorporated. The CL intensity was measured at an accelerating voltage of 1-5 keV and a fixed beam current of 8.5 μA. The effects of accelerating voltage on the CL intensity and the CL degradation of SiO2:Pr3+ and ZnO·SiO2:Pr3+ were also investigated using Auger electron spectroscopy coupled with an Ocean Optics S2000 spectrometer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Lakshminarayana G, Qiu J (2009) J Alloy Compd 476:470

    Article  CAS  Google Scholar 

  2. 2.

    Rai VK, Kumar K, Rai SB (2009) Optical Mater 29:873

    Article  ADS  Google Scholar 

  3. 3.

    Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-Verlag, Berlin

    Google Scholar 

  4. 4.

    Pinel E, Boutnaud P, Mahiou R (2004) J Alloy Compd 374:165

    Article  CAS  Google Scholar 

  5. 5.

    Balda R, Voda M, Al-Saleh M, Fernandez J (2002) J Lumin 97:190

    Article  CAS  Google Scholar 

  6. 6.

    Gusowski MA, Dominiak-Dzik G, Solarz P, Lisiecki R, Ryba-Romanowski W (2007) J Alloy Compd 438:72

    Article  CAS  Google Scholar 

  7. 7.

    Seeber W, Downing EA, Hesselink L, Fejer MM, Ehrt D (1995) J Non-Crystall Solid 189:218

    Article  CAS  ADS  Google Scholar 

  8. 8.

    Strek W, Legendziewicz J, Lukowiak E, Maruszewski K, Sokolnicki J, Boiko AA, Borzechowska M (1998) Spectrochim Acta A 54:2215

    Article  Google Scholar 

  9. 9.

    Annapurna K, Chakrabarti R, Buddhudu S (2007) J Mater Sci 42:6755. doi:10.1007/s10853-006-1465-x

    Article  CAS  ADS  Google Scholar 

  10. 10.

    Mazurak Z, Pisarski WA, Gabrys-Pisarska J, Zelechower M (2003) Phys Stat Sol (b) 237(2):581

    Article  CAS  ADS  Google Scholar 

  11. 11.

    Del Longo L, Ferrari M, Zanghellini E, Bettinelli M, Capobianco JA, Montagna M, Rossi F (1998) J Non-Crystall Solid 231:178

    Article  CAS  ADS  Google Scholar 

  12. 12.

    Ravi Kumar A, Veeraiah N, Appa Rao B (1997) J Lumin 75:57

    Article  Google Scholar 

  13. 13.

    X-jun Wang, Huang SH, Reeves R, Wells W, Dejneka MJ, Meltzer RA, Yen WM (2001) J Lumin 94–95:229

    Google Scholar 

  14. 14.

    De G, Licciulli A, Nacucchi M (1996) J Non-Crystall Solid 201:153

    Article  CAS  ADS  Google Scholar 

  15. 15.

    Boiko AA, Poddenezhny EN, Lukowiak E, Strek W, Sokolnicki J, Legendziewicz J (1995) J Appl Spectrosc 62(4):656

    Article  ADS  Google Scholar 

  16. 16.

    Biswas A, Chakrabarti S, Acharya HN (1997) Mater Sci Eng B49:191

    Article  CAS  Google Scholar 

  17. 17.

    Diallo PT, Boutinaud P, Mahiou R, Coussens JC (1997) Phys Stat Sol (a) 160:255

    Article  CAS  ADS  Google Scholar 

  18. 18.

    Duan CY, Chen J, Deng SZ, Xu NS, Zhang JH, Liang HB, Su Q (2007) J Vac Sci Technol B25(2):618

    Google Scholar 

  19. 19.

    Swart HC, Greeff AP (2004) Surf Interface Anal 36:1178

    Article  CAS  Google Scholar 

  20. 20.

    Psuja P, Hreniak D, Strek WJ (2007) J Nanomater, Article No. 81350. doi:10.1155/2007/81350

  21. 21.

    Ntwaeaborwa OM, Swart HC, Kroon RE, Holloway PH, Botha JR (2006) J Chem Phys Solid 67:1749

    Article  CAS  ADS  Google Scholar 

  22. 22.

    Ntwaeaborwa OM, Hillie KT, Swart HC (2004) Phys Stat Sol (c) 1(9):2366

    Article  CAS  Google Scholar 

  23. 23.

    Kamat PV, Patrick B (1992) J Phys Chem 96:6829

    Article  CAS  Google Scholar 

  24. 24.

    Van Dijken A, Makkinje J, Meijerink A (2001) J Lumin 92:323

    Article  Google Scholar 

  25. 25.

    Ntwaeaborwa OM, Holloway PH (2005) Nanotechnology 16:865

    Article  CAS  ADS  Google Scholar 

  26. 26.

    Biswas A, Acharya HN (1997) Mater Res Bull 32(11):1551

    Article  CAS  Google Scholar 

  27. 27.

    de Mello Donega C, Meijerink A, Blasse G (1995) J Appl Spectrosc 62(4):664

    Article  ADS  Google Scholar 

  28. 28.

    Isasi-Marin J, Perez-Estebanez M, Diaz-Guera C, Castillo JF, Correcher V, Cuervo-Rodriguez MR (2009) J Phys D-Appl Phys 42(7), Article No. 075418. doi:10.1088/0022-3727/42/7/075418

  29. 29.

    Bang J, Yang H, Holloway PH (2005) J Chem Phys 123:084709. doi:10.1063/1.2007647

    Article  PubMed  ADS  Google Scholar 

  30. 30.

    Swart HC, Oosthuizen L, Holloway PH, Berning GLP (1998) Surf Interface Anal 26:337

    Article  CAS  Google Scholar 

  31. 31.

    Swart HC, Hillie KT, Greeff AP (2001) Surf Interface Anal 32:110

    Article  CAS  Google Scholar 

  32. 32.

    Thomas S (1974) J Appl Phys 45(1):161

    Article  CAS  ADS  Google Scholar 

  33. 33.

    Dhlamini MS, Terblans JJ, Ntwaeaborwa OM, Swart HC (2007) Surface Rev Lett 14(4):697

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mart-Mari Biggs for assisting with CL measurements. This project is financially supported by the Department of Science and Technology of South Africa and the Council for Scientific and Industrial Research of South Africa.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. T. Hillie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mhlongo, G.H., Ntwaeaborwa, O.M., Dhlamini, M.S. et al. Cathodoluminescence properties of SiO2:Pr3+and ZnO·SiO2:Pr3+ phosphor nanopowders. J Mater Sci 45, 5228–5236 (2010). https://doi.org/10.1007/s10853-010-4563-8

Download citation

Keywords

  • SiO2
  • Phosphor Powder
  • Thermal Quenching
  • Dead Layer
  • Electron Bombardment